English

If `Sin(Sin^(-1) 1/5 + Cos^(-1) X) = 1` Then Find the Value of X - Mathematics

Advertisements
Advertisements

Question

if `sin(sin^(-1)  1/5 + cos^(-1) x)  = 1` then find the value of x

Solution

`sin(sin^(-1)  1/5  + cos^(-1) x ) = 1`

`=> sin (sin^(-1)  1/5) cos(cos^(-1)x) + cos(sin^(-1)  1/5) sin(cos^(-1) x) = 1`

`[sin(A+B) = sin A cosB + cosA sin B]`

`=> 1/5 xx x + cos(sin^-1  1/5) sin(cos^(-1) x)  = 1 `

`=> x/5 + cos(sin^(-1)  1/5) sin (cos^(-1) x) = 1`     (1)

Now let `sin^(-1)  1/5 = y`

Then, `siny = 1/5  => cos y = sqrt(1 - (1/5)^2) = (2sqrt6)/5 => y = cos^(-1) ((2sqrt6)/5)`

`:. sin^(-1)  1/5 = cos^(-1)  ((2sqrt6)/5) `  ...(2)

Let `cos^(-1) x = z`

Then `cos z = x => sin z = sqrt(1-x^2) => z = sin^(-1) (sqrt(1-x^2))`

`:. cos^(-1) x = sin^(-1) (sqrt(1-x^2))`

From 1, 2 and 3 we have

`x/5 + cos(cos^(-1) (2sqrt6)/5). sin(sin^(-1)sqrt(1- x^2)) = 1`

`=>  x/5  + (2sqrt6)/5. sqrt(1 - x^2) = 1`

`=> x + 2sqrt6sqrt(1-x^2) = 5`

`= 2sqrt6sqrt(1-x^2) = 5 - x`

On squaring both sides, we get:

`(4)(6)(1-x^2) = 25 + x^2 - 10x`

`=> 24 - 24x^2 = 25 + x^2 - 10x`

`=> 25x^2 - 10x + 1 = 0`

`=> (5x - 1)^2 = 0`

=> (5x -1) = 0

`=> x = 1/5`

Hence, the value of x is `1/5`

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Inverse Trigonometric Functions - Exercise 2.2 [Page 48]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 2 Inverse Trigonometric Functions
Exercise 2.2 | Q 14 | Page 48

RELATED QUESTIONS

Prove that: `tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4`


If `tan^-1(2x)+tan^-1(3x)=pi/4`, then find the value of ‘x’.


Write the following function in the simplest form:

`tan^(-1)  (sqrt(1+x^2) -1)/x, x != 0`


Find the value of `cot(tan^(-1) a + cot^(-1) a)`


if `tan^(-1)  (x-1)/(x - 2) + tan^(-1)  (x + 1)/(x + 2) = pi/4` then find the value of x.


Find the value of the given expression.

`tan(sin^(-1)  3/5 + cot^(-1)  3/2)`


Prove that:

`sin^(-1)  8/17 + sin^(-1)  3/5 = tan^(-1)  77/36`


Prove that:

`tan^(-1) sqrtx = 1/2 cos^(-1) ((1-x)/(1+x)) , x in [0, 1]`


Prove `(9pi)/8 - 9/4  sin^(-1)  1/3 = 9/4 sin^(-1)  (2sqrt2)/3`


Solve the following equation:

`2 tan^(-1) (cos x) =  tan^(-1) (2 cosec x)`


Solve  `tan^(-1) -  tan^(-1)  (x - y)/(x+y)` is equal to

(A) `pi/2`

(B). `pi/3` 

(C) `pi/4` 

(D) `(-3pi)/4`


Prove that `3sin^(-1)x = sin^(-1) (3x - 4x^3)`, `x in [-1/2, 1/2]`


Prove that

\[2 \tan^{- 1} \left( \frac{1}{5} \right) + \sec^{- 1} \left( \frac{5\sqrt{2}}{7} \right) + 2 \tan^{- 1} \left( \frac{1}{8} \right) = \frac{\pi}{4}\] .

 

If y = `(x sin^-1 x)/sqrt(1 -x^2)`, prove that: `(1 - x^2)dy/dx = x + y/x`


Solve: tan-1 4 x + tan-1 6x `= π/(4)`.


Solve for x : `tan^-1 ((2-"x")/(2+"x")) = (1)/(2)tan^-1  ("x")/(2), "x">0.`


Find the value of the expression in terms of x, with the help of a reference triangle

cos (tan–1 (3x – 1))


Find the value of `sin^-1[cos(sin^-1 (sqrt(3)/2))]`


Prove that `sin^-1  3/5 - cos^-1  12/13 = sin^-1  16/65`


Prove that `tan^-1x + tan^-1y + tan^-1z = tan^-1[(x + y + z - xyz)/(1 - xy - yz - zx)]`


If tan–1x + tan1y + tan1z = π, show that x + y + z = xyz


Solve: `sin^-1  5/x + sin^-1  12/x = pi/2`


Solve: `cot^-1 x - cot^-1 (x + 2) = pi/12, x > 0`


Choose the correct alternative:

`sin^-1  3/5 - cos^-1  13/13 + sec^-1  5/3 - "cosec"^-1  13/12` is equal to


Choose the correct alternative:

`tan^-1 (1/4) + tan^-1 (2/9)` is equal to


Evaluate: `sin^-1 [cos(sin^-1 sqrt(3)/2)]`


Evaluate `cos[cos^-1 ((-sqrt(3))/2) + pi/6]`


The value of `"tan"^ -1 (3/4) + "tan"^-1 (1/7)` is ____________.


If `"tan"^-1 ("cot"  theta) = 2theta, "then"  theta` is equal to ____________.


The value of expression 2 `"sec"^-1  2 + "sin"^-1 (1/2)`


The value of `"tan"^-1 (3/4) + "tan"^-1 (1/7)` is ____________.


If `"sin" {"sin"^-1 (1/2) + "cos"^-1 "x"} = 1`, then the value of x is ____________.


If `"sin"^-1 (1 - "x") - 2  "sin"^-1 ("x") = pi/2,` then x is equal to ____________.


If `3  "sin"^-1 ((2"x")/(1 + "x"^2)) - 4  "cos"^-1 ((1 - "x"^2)/(1 + "x"^2)) + 2 "tan"^-1 ((2"x")/(1 - "x"^2)) = pi/3` then x is equal to ____________.


The Government of India is planning to fix a hoarding board at the face of a building on the road of a busy market for awareness on COVID-19 protocol. Ram, Robert and Rahim are the three engineers who are working on this project. “A” is considered to be a person viewing the hoarding board 20 metres away from the building, standing at the edge of a pathway nearby. Ram, Robert and Rahim suggested to the firm to place the hoarding board at three different locations namely C, D and E. “C” is at the height of 10 metres from the ground level. For viewer A, the angle of elevation of “D” is double the angle of elevation of “C” The angle of elevation of “E” is triple the angle of elevation of “C” for the same viewer. Look at the figure given and based on the above information answer the following:

ЁЭР┤' Is another viewer standing on the same line of observation across the road. If the width of the road is 5 meters, then the difference between ∠CAB and ∠CA'B is ______.


`tan^-1  1/2 + tan^-1  2/11` is equal to


Find the value of `cos^-1 (1/2) + 2sin^-1 (1/2) ->`:-


If `tan^-1 ((x - 1)/(x + 1)) + tan^-1 ((2x - 1)/(2x + 1)) = tan^-1 (23/36)` = then prove that 24x2 – 23x – 12 = 0


Share
Notifications

Englishрд╣рд┐рдВрджреАрдорд░рд╛рдареА


      Forgot password?
Use app×