English

If Y = (X Sin^-1 X)/Sqrt(1 -x^2), Prove That: (1 - X^2)Dy/Dx = X + Y/X - Mathematics

Advertisements
Advertisements

Question

If y = `(x sin^-1 x)/sqrt(1 -x^2)`, prove that: `(1 - x^2)dy/dx = x + y/x`

Sum

Solution

Here, we have  y = `(x sin^-1 x)/sqrt(1 -x^2)`

y `sqrt(1 -x^2)` = x sin-1  x                         ....(i)

Differentiate both sides w.r.t. x, we have

`y ((-2x))/(2sqrt(1 -x^2)) + sqrt(1 - x^2)  (dy)/(dx) = x (1)/sqrt(1 -x^2) + sin^-1 x`

`- xy + (1 - x^2) (dy)/(dx) = x + sqrt(1 - x^2) sin^-1  x`

`- xy + (1 - x^2) (dy)/(dx) = x + sqrt(1 - x^2) . (y)/(x) sqrt(1 -x^2)    ...[ ∵ sin^-1 x = (y)/(x) sqrt(1 - x^2) , "using" (i) ]`

`- xy + (1 - x^2) (dy)/(dx) = x + (y)/(x) (1 - x^2)`

`- xy + (1 - x^2) (dy)/(dx) = x + (y)/(x) - yx`

`(1 - x^2) (dy)/(dx) = x + (y)/(x) `

shaalaa.com
  Is there an error in this question or solution?
2013-2014 (March)

APPEARS IN

RELATED QUESTIONS

Prove that `cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2;x in (0,pi/4) `


If a line makes angles 90°, 60° and θ with x, y and z-axis respectively, where θ is acute, then find θ.


Prove the following: 

`3cos^(-1) x = cos^(-1)(4x^3 - 3x), x in [1/2, 1]`


if `tan^(-1)  (x-1)/(x - 2) + tan^(-1)  (x + 1)/(x + 2) = pi/4` then find the value of x.


Find the value of the given expression.

`sin^(-1) (sin  (2pi)/3)`


Find the value of the given expression.

`tan^(-1) (tan  (3pi)/4)`


Solve the following equation for x:  `cos (tan^(-1) x) = sin (cot^(-1)  3/4)`


Solve for x : \[\tan^{- 1} \left( \frac{x - 2}{x - 1} \right) + \tan^{- 1} \left( \frac{x + 2}{x + 1} \right) = \frac{\pi}{4}\] .


Solve: tan-1 4 x + tan-1 6x `= π/(4)`.


Find the value of `cot[sin^-1  3/5 + sin^-1  4/5]`


Choose the correct alternative:

If `sin^-1x + cot^-1 (1/2) = pi/2`, then x is equal to


Evaluate: `tan^-1 sqrt(3) - sec^-1(-2)`.


Prove that `2sin^-1  3/5 - tan^-1  17/31 = pi/4`


Prove that cot–17 + cot–18 + cot–118 = cot–13


The value of the expression `tan (1/2 cos^-1  2/sqrt(5))` is ______.


If |x| ≤ 1, then `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` is equal to ______.


If cos–1α + cos–1β + cos–1γ = 3π, then α(β + γ) + β(γ + α) + γ(α + β) equals ______.


The value of cot–1(–x) for all x ∈ R in terms of cot–1x is ______.


The value of cot `("cosec"^-1 5/3 + "tan"^-1 2/3)` is ____________.


If `"tan"^-1 2  "x + tan"^-1 3  "x" = pi/4`, then x is ____________.


`"cos"^-1["cos"(2"cot"^-1(sqrt2 - 1))]` = ____________.


If `6"sin"^-1 ("x"^2 - 6"x" + 8.5) = pi,` then x is equal to ____________.


`"tan"^-1 (sqrt3)`


If `"sin" {"sin"^-1 (1/2) + "cos"^-1 "x"} = 1`, then the value of x is ____________.


Find the value of `cos^-1 (1/2) + 2sin^-1 (1/2) ->`:-


`tan(2tan^-1  1/5 + sec^-1  sqrt(5)/2 + 2tan^-1  1/8)` is equal to ______.


The set of all values of k for which (tan–1 x)3 + (cot–1 x)3 = kπ3, x ∈ R, is the internal ______.


If `tan^-1 ((x - 1)/(x + 1)) + tan^-1 ((2x - 1)/(2x + 1)) = tan^-1 (23/36)` = then prove that 24x2 – 23x – 12 = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×