Advertisements
Advertisements
Question
If `tan^-1 ((x - 1)/(x + 1)) + tan^-1 ((2x - 1)/(2x + 1)) = tan^-1 (23/36)` = then prove that 24x2 – 23x – 12 = 0
Solution
`tan^-1 ((x - 1)/(x + 1)) + tan^-1 ((2x - 1)/(2x + 1)) = tan^-1 (23/36)`
`\implies tan^-1 {((x - 1)/(x + 1) + (2x - 1)/(2x + 1))/(1 - ((x - 1)/(x + 1))((2x - 1)/(2x + 1)))} = tan^-1 (23/36)`
`\implies tan^-1 ((2x^2 - x - 1 + 2x^2 + x - 1)/(2x^2 + 3x + 1 - 2x^2 + 3x - 1)) = tan^-1 (23/36)` ...`{{:("Using formula:"),(tan^-1"a" + tan^-1"b" = tan^-1(("a" + "b")/(1 - "ab"))):}}`
`\implies tan^-1 ((4x^2 - 2)/(6x)) = 23/36`
∴ `(4x^2 - 2)/(6x) = 23/36`
`\implies` 6(4x2 – 2) = 23x
`\implies` 24x2 – 23x – 12 = 0
APPEARS IN
RELATED QUESTIONS
If `sin (sin^(−1)(1/5)+cos^(−1) x)=1`, then find the value of x.
Solve for x : tan-1 (x - 1) + tan-1x + tan-1 (x + 1) = tan-1 3x
Prove that:
`tan^(-1)""1/5+tan^(-1)""1/7+tan^(-1)""1/3+tan^(-1)""1/8=pi/4`
Write the following function in the simplest form:
`tan^(-1) (sqrt((1-cos x)/(1 + cos x))), x < pi`
Write the following function in the simplest form:
`tan^(-1) x/(sqrt(a^2 - x^2))`, |x| < a
Find the value of the given expression.
`tan^(-1) (tan (3pi)/4)`
`cos^(-1) (cos (7pi)/6)` is equal to ______.
Prove `tan^(-1) 1/5 + tan^(-1) (1/7) + tan^(-1) 1/3 + tan^(-1) 1/8 = pi/4`
Prove that `3sin^(-1)x = sin^(-1) (3x - 4x^3)`, `x in [-1/2, 1/2]`
If tan-1 x - cot-1 x = tan-1 `(1/sqrt(3)),`x> 0 then find the value of x and hence find the value of sec-1 `(2/x)`.
Solve: tan-1 4 x + tan-1 6x `= π/(4)`.
Find the value, if it exists. If not, give the reason for non-existence
`tan^-1(sin(- (5pi)/2))`
Find the value of the expression in terms of x, with the help of a reference triangle
cos (tan–1 (3x – 1))
Find the value of `sin^-1[cos(sin^-1 (sqrt(3)/2))]`
Prove that `tan^-1x + tan^-1y + tan^-1z = tan^-1[(x + y + z - xyz)/(1 - xy - yz - zx)]`
Solve: `cot^-1 x - cot^-1 (x + 2) = pi/12, x > 0`
Choose the correct alternative:
sin–1(2 cos2x – 1) + cos–1(1 – 2 sin2x) =
Evaluate tan (tan–1(– 4)).
Evaluate `cos[sin^-1 1/4 + sec^-1 4/3]`
Solve the equation `sin^-1 6x + sin^-1 6sqrt(3)x = - pi/2`
The value of cot–1(–x) for all x ∈ R in terms of cot–1x is ______.
The value of cos215° - cos230° + cos245° - cos260° + cos275° is ______.
The minimum value of sinx - cosx is ____________.
If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt"cos" alpha) = "x",` the sinx is equal to ____________.
The value of `"tan"^-1 (1/2) + "tan"^-1(1/3) + "tan"^-1(7/8)` is ____________.
`"tan" (pi/4 + 1/2 "cos"^-1 "x") + "tan" (pi/4 - 1/2 "cos"^-1 "x") =` ____________.
If `"sin" {"sin"^-1 (1/2) + "cos"^-1 "x"} = 1`, then the value of x is ____________.
Find the value of `tan^-1 [2 cos (2 sin^-1 1/2)] + tan^-1 1`.