English

If tan-1(x-1x+1)+tan-1(2x-12x+1)=tan-1(2336) = then prove that 24x2 – 23x – 12 = 0 - Mathematics

Advertisements
Advertisements

Question

If `tan^-1 ((x - 1)/(x + 1)) + tan^-1 ((2x - 1)/(2x + 1)) = tan^-1 (23/36)` = then prove that 24x2 – 23x – 12 = 0

Sum

Solution

`tan^-1 ((x - 1)/(x + 1)) + tan^-1 ((2x - 1)/(2x + 1)) = tan^-1 (23/36)`

`\implies tan^-1 {((x  -  1)/(x  +  1) + (2x  -  1)/(2x  +  1))/(1 - ((x  -  1)/(x  +  1))((2x  -  1)/(2x  +  1)))} = tan^-1 (23/36)`

`\implies tan^-1 ((2x^2 - x - 1 + 2x^2 + x - 1)/(2x^2 + 3x + 1 - 2x^2 + 3x - 1)) = tan^-1 (23/36)`   ...`{{:("Using formula:"),(tan^-1"a" + tan^-1"b" = tan^-1(("a"  +  "b")/(1  -  "ab"))):}}`

`\implies tan^-1 ((4x^2 - 2)/(6x)) = 23/36`

∴ `(4x^2 - 2)/(6x) = 23/36`

`\implies` 6(4x2 – 2) = 23x

`\implies` 24x2 – 23x – 12 = 0

shaalaa.com
  Is there an error in this question or solution?
2022-2023 (March) Official

RELATED QUESTIONS

 

If `sin (sin^(−1)(1/5)+cos^(−1) x)=1`, then find the value of x.

 

Solve for x : tan-1 (x - 1) + tan-1x + tan-1 (x + 1) = tan-1 3x


 

Prove that:

`tan^(-1)""1/5+tan^(-1)""1/7+tan^(-1)""1/3+tan^(-1)""1/8=pi/4`

 

Write the following function in the simplest form:

`tan^(-1) (sqrt((1-cos x)/(1 + cos x))), x < pi`


Write the following function in the simplest form:

`tan^(-1)  x/(sqrt(a^2 - x^2))`, |x| < a


Find the value of the given expression.

`tan^(-1) (tan  (3pi)/4)`


`cos^(-1) (cos  (7pi)/6)` is equal to ______.


Prove `tan^(-1)   1/5 + tan^(-1)  (1/7) + tan^(-1)  1/3 + tan^(-1)  1/8 = pi/4`


Prove that `3sin^(-1)x = sin^(-1) (3x - 4x^3)`, `x in [-1/2, 1/2]`


If tan-1 x - cot-1 x = tan-1 `(1/sqrt(3)),`x> 0 then find the value of x and hence find the value of sec-1 `(2/x)`.


Solve: tan-1 4 x + tan-1 6x `= π/(4)`.


Find the value, if it exists. If not, give the reason for non-existence

`tan^-1(sin(- (5pi)/2))`


Find the value of the expression in terms of x, with the help of a reference triangle

cos (tan–1 (3x – 1))


Find the value of `sin^-1[cos(sin^-1 (sqrt(3)/2))]`


Prove that `tan^-1x + tan^-1y + tan^-1z = tan^-1[(x + y + z - xyz)/(1 - xy - yz - zx)]`


Solve: `cot^-1 x - cot^-1 (x + 2) = pi/12, x > 0`


Choose the correct alternative:

sin–1(2 cos2x – 1) + cos1(1 – 2 sin2x) =


Evaluate tan (tan–1(– 4)).


Evaluate `cos[sin^-1  1/4 + sec^-1  4/3]`


Solve the equation `sin^-1 6x + sin^-1 6sqrt(3)x = - pi/2`


The value of cot–1(–x) for all x ∈ R in terms of cot–1x is ______.


The value of cos215° - cos230° + cos245° - cos260° + cos275° is ______.


The minimum value of sinx - cosx is ____________.


If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt"cos" alpha) = "x",` the sinx is equal to ____________.


The value of `"tan"^-1 (1/2) + "tan"^-1(1/3) + "tan"^-1(7/8)` is ____________.


`"tan" (pi/4 + 1/2 "cos"^-1 "x") + "tan" (pi/4 - 1/2 "cos"^-1 "x") =` ____________.


If `"sin" {"sin"^-1 (1/2) + "cos"^-1 "x"} = 1`, then the value of x is ____________.


Find the value of `tan^-1 [2 cos (2 sin^-1  1/2)] + tan^-1 1`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×