Advertisements
Advertisements
Question
Solve the equation `sin^-1 6x + sin^-1 6sqrt(3)x = - pi/2`
Solution
From the given equation
we have `sin^-1 6x = - pi/2 - sin^-1 6sqrt(3)x`
⇒ `sin(sin^-1 6x) = sin(- pi/2 - sin^-1 6sqrt(3)x)`
⇒ 6x = `- cos(sin^-1 6sqrt(3)x)`
⇒ 6x = `-sqrt(1 - 108x^2)`.
Squaring, we get
`36x^2= 1 - 108x^2`
⇒ 144x2 = 1
⇒ x = `+- 1/12`
Note that x = `- 1/12` is the only root of the equation as x = `1/12` does not satisfy it.
APPEARS IN
RELATED QUESTIONS
If `sin (sin^(−1)(1/5)+cos^(−1) x)=1`, then find the value of x.
Write the following function in the simplest form:
`tan^(-1) (sqrt((1-cos x)/(1 + cos x))), x < pi`
Write the following function in the simplest form:
`tan^(-1) x/(sqrt(a^2 - x^2))`, |x| < a
Find the value of `cot(tan^(-1) a + cot^(-1) a)`
Find the value of following:
`tan 1/2 [sin^(-1) (2x)/(1+ x^2) + cos^(-1) (1-y^2)/(1+y^2)], |x| < 1, y> 0 and xy < 1`
Find the value of the given expression.
`sin^(-1) (sin (2pi)/3)`
`cos^(-1) (cos (7pi)/6)` is equal to ______.
Prove that:
`sin^(-1) 8/17 + sin^(-1) 3/5 = tan^(-1) 77/36`
Prove `tan^(-1) 1/5 + tan^(-1) (1/7) + tan^(-1) 1/3 + tan^(-1) 1/8 = pi/4`
sin (tan–1 x), | x| < 1 is equal to ______.
sin–1 (1 – x) – 2 sin–1 x = `pi/2` , then x is equal to ______.
Solve `tan^(-1) - tan^(-1) (x - y)/(x+y)` is equal to
(A) `pi/2`
(B). `pi/3`
(C) `pi/4`
(D) `(-3pi)/4`
Solve for x : \[\tan^{- 1} \left( \frac{x - 2}{x - 1} \right) + \tan^{- 1} \left( \frac{x + 2}{x + 1} \right) = \frac{\pi}{4}\] .
Solve: tan-1 4 x + tan-1 6x `= π/(4)`.
Find the value of `cot[sin^-1 3/5 + sin^-1 4/5]`
Prove that `tan^-1x + tan^-1 (2x)/(1 - x^2) = tan^-1 (3x - x^3)/(1 - 3x^2), |x| < 1/sqrt(3)`
Choose the correct alternative:
If `sin^-1x + sin^-1y = (2pi)/3` ; then `cos^-1x + cos^-1y` is equal to
Choose the correct alternative:
sin–1(2 cos2x – 1) + cos–1(1 – 2 sin2x) =
If a1, a2, a3,...,an is an arithmetic progression with common difference d, then evaluate the following expression.
`tan[tan^-1("d"/(1 + "a"_1 "a"_2)) + tan^-1("d"/(21 + "a"_2 "a"_3)) + tan^-1("d"/(1 + "a"_3 "a"_4)) + ... + tan^-1("d"/(1 + "a"_("n" - 1) "a""n"))]`
If 3 tan–1x + cot–1x = π, then x equals ______.
The value of `"tan"^ -1 (3/4) + "tan"^-1 (1/7)` is ____________.
`"cot" ("cosec"^-1 5/3 + "tan"^-1 2/3) =` ____________.
The value of cot-1 9 + cosec-1 `(sqrt41/4)` is given by ____________.
Solve for x : `"sin"^-1 2"x" + "sin"^-1 3"x" = pi/3`
`"sin"^-1 (1/sqrt2)`
`"cos"^-1 (1/2)`
The set of all values of k for which (tan–1 x)3 + (cot–1 x)3 = kπ3, x ∈ R, is the internal ______.
If sin–1x + sin–1y + sin–1z = π, show that `x^2 - y^2 - z^2 + 2yzsqrt(1 - x^2) = 0`