English

Solve the equation sin-16x+sin-163x=-π2 - Mathematics

Advertisements
Advertisements

Question

Solve the equation `sin^-1 6x + sin^-1 6sqrt(3)x = - pi/2`

Sum

Solution

From the given equation

we have `sin^-1 6x = - pi/2 - sin^-1 6sqrt(3)x`

⇒ `sin(sin^-1 6x) = sin(- pi/2 - sin^-1 6sqrt(3)x)`

⇒ 6x = `- cos(sin^-1 6sqrt(3)x)`

⇒ 6x = `-sqrt(1 - 108x^2)`.

Squaring, we get

`36x^2= 1 - 108x^2`

⇒ 144x2 = 1

⇒ x = `+- 1/12`

Note that x = `- 1/12` is the only root of the equation as x = `1/12` does not satisfy it.

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Inverse Trigonometric Functions - Solved Examples [Page 26]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 2 Inverse Trigonometric Functions
Solved Examples | Q 19 | Page 26

RELATED QUESTIONS

 

If `sin (sin^(−1)(1/5)+cos^(−1) x)=1`, then find the value of x.

 

Write the following function in the simplest form:

`tan^(-1) (sqrt((1-cos x)/(1 + cos x))), x < pi`


Write the following function in the simplest form:

`tan^(-1)  x/(sqrt(a^2 - x^2))`, |x| < a


Find the value of `cot(tan^(-1) a + cot^(-1) a)`


Find the value of following:

`tan  1/2 [sin^(-1)  (2x)/(1+ x^2) + cos^(-1)  (1-y^2)/(1+y^2)], |x| < 1, y> 0  and xy < 1`


Find the value of the given expression.

`sin^(-1) (sin  (2pi)/3)`


`cos^(-1) (cos  (7pi)/6)` is equal to ______.


Prove that:

`sin^(-1)  8/17 + sin^(-1)  3/5 = tan^(-1)  77/36`


Prove `tan^(-1)   1/5 + tan^(-1)  (1/7) + tan^(-1)  1/3 + tan^(-1)  1/8 = pi/4`


sin (tan–1 x), | x| < 1 is equal to ______.


sin–1 (1 – x) – 2 sin–1 x = `pi/2` then x is equal to ______.


Solve  `tan^(-1) -  tan^(-1)  (x - y)/(x+y)` is equal to

(A) `pi/2`

(B). `pi/3` 

(C) `pi/4` 

(D) `(-3pi)/4`


Solve for x : \[\tan^{- 1} \left( \frac{x - 2}{x - 1} \right) + \tan^{- 1} \left( \frac{x + 2}{x + 1} \right) = \frac{\pi}{4}\] .


Solve: tan-1 4 x + tan-1 6x `= π/(4)`.


Find the value of `cot[sin^-1  3/5 + sin^-1  4/5]`


Prove that `tan^-1x + tan^-1  (2x)/(1 - x^2) = tan^-1  (3x - x^3)/(1 - 3x^2), |x| < 1/sqrt(3)`


Choose the correct alternative:

If `sin^-1x + sin^-1y = (2pi)/3` ; then `cos^-1x + cos^-1y` is equal to


Choose the correct alternative:

sin–1(2 cos2x – 1) + cos1(1 – 2 sin2x) =


If a1, a2, a3,...,an is an arithmetic progression with common difference d, then evaluate the following expression.

`tan[tan^-1("d"/(1 + "a"_1 "a"_2)) + tan^-1("d"/(21 + "a"_2 "a"_3)) + tan^-1("d"/(1 + "a"_3 "a"_4)) + ... + tan^-1("d"/(1 + "a"_("n" - 1) "a""n"))]`


If 3 tan–1x + cot–1x = π, then x equals ______.


The value of `"tan"^ -1 (3/4) + "tan"^-1 (1/7)` is ____________.


`"cot" ("cosec"^-1  5/3 + "tan"^-1  2/3) =` ____________.


The value of cot-1 9 + cosec-1 `(sqrt41/4)` is given by ____________.


Solve for x : `"sin"^-1  2"x" + "sin"^-1  3"x" = pi/3`


`"sin"^-1 (1/sqrt2)`


`"cos"^-1 (1/2)`


The set of all values of k for which (tan–1 x)3 + (cot–1 x)3 = kπ3, x ∈ R, is the internal ______.


If sin–1x + sin–1y + sin–1z = π, show that `x^2 - y^2 - z^2 + 2yzsqrt(1 - x^2) = 0`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×