Advertisements
Advertisements
Question
Find the values of x which satisfy the equation sin–1x + sin–1(1 – x) = cos–1x.
Solution
From the given equation
We have sin (sin–1x + sin–1 (1 – x)) = sin (cos–1x)
⇒ sin (sin–1x) cos (sin–1(1 – x)) + cos (sin–1x) sin (sin–1(1 – x) ) = sin (cos–1x)
⇒ `xsqrt(1 - (1 - x)^2) + (1 - x) sqrt(1 - x^2) = sqrt(1 - x^2)`
⇒ `xsqrt(2x - x^2) + sqrt(1 - x^2) (1 - x - 1)` = 0
⇒ `x(sqrt(2x - x^2) - sqrt(1 - x^2))` = 0
⇒ x = 0 or `2x - x^2 = 1 - x^2`
⇒ x = 0 or x =`1/2`.
APPEARS IN
RELATED QUESTIONS
The principal solution of the equation cot x=`-sqrt 3 ` is
Solve `3tan^(-1)x + cot^(-1) x = pi`
Find the principal value of the following:
`sin^-1(cos (3pi)/4)`
For the principal value, evaluate of the following:
`cos^-1 1/2+2sin^-1 (1/2)`
For the principal value, evaluate of the following:
`sin^-1(-sqrt3/2)+cos^-1(sqrt3/2)`
Find the principal value of the following:
`tan^-1(1/sqrt3)`
Find the principal value of the following:
`sec^-1(-sqrt2)`
Find the principal value of the following:
`sec^-1(2)`
Find the principal value of the following:
`\text(cosec)^-1(2/sqrt3)`
if sec-1 x = cosec-1 v. show that `1/x^2 + 1/y^2 = 1`
If `sin^-1"x" + tan^-1"x" = pi/2`, prove that `2"x"^2 + 1 = sqrt5`
Find the value of `sin[2cot^-1 ((-5)/12)]`
Find the value of `sin(2tan^-1 2/3) + cos(tan^-1 sqrt(3))`
Which of the following corresponds to the principal value branch of tan–1?
The principal value branch of sec–1 is ______.
The value of cot (sin–1x) is ______.
The value of tan2 (sec–12) + cot2 (cosec–13) is ______.
Find the value of `tan^-1 (tan (2pi)/3)`
Find the value of the expression `sin(2tan^-1 1/3) + cos(tan^-1 2sqrt(2))`
If tan–1x + tan–1y = `(4pi)/5`, then cot–1x + cot–1y equals ______.
The value of `sin^-1 (sin (3pi)/5)` is ______.
If `cos(tan^-1x + cot^-1 sqrt(3))` = 0, then value of x is ______.
The set of values of `sec^-1 (1/2)` is ______.
The least numerical value, either positive or negative of angle θ is called principal value of the inverse trigonometric function.
The period of the function f(x) = cos4x + tan3x is ____________.
The general solution of the equation `"cot" theta - "tan" theta = "sec" theta` is ____________ where `(n in I).`
Which of the following is the principal value branch of `"cos"^-1 "x"`
What is the value of `tan^-1(1) cos^-1(- 1/2) + sin^-1(- 1/2)`
Evaluate `sin^-1 (sin (3π)/4) + cos^-1 (cos π) + tan^-1 (1)`.