Advertisements
Advertisements
Question
Which of the following corresponds to the principal value branch of tan–1?
Options
`(- pi/2, pi/2)`
`[- pi/2, pi/2]`
`(- pi/2, pi/2) - {0}`
(0, π)
Solution
`(- pi/2, pi/2)`
APPEARS IN
RELATED QUESTIONS
Find the principal value of the following:
`sin^-1(cos (2pi)/3)`
Find the principal value of the following:
`tan^-1(1/sqrt3)`
Find the principal value of the following:
`sec^-1(2)`
Find the principal value of the following:
`\text(cosec)^-1(2/sqrt3)`
Show that `"sin"^-1(5/13) + "cos"^-1(3/5) = "tan"^-1(63/16)`
Show that `"sin"^-1(5/13) + "cos"^-1(3/5) = "tan"^-1(63/16)`
Find value of tan (cos–1x) and hence evaluate `tan(cos^-1 8/17)`
Find the value of `sin[2cot^-1 ((-5)/12)]`
The principal value branch of sec–1 is ______.
The domain of sin–1 2x is ______.
The greatest and least values of (sin–1x)2 + (cos–1x)2 are respectively ______.
The value of sin (2 sin–1 (.6)) is ______.
Find the value of `tan^-1 (tan (5pi)/6) +cos^-1(cos (13pi)/6)`
Find the value of `tan^-1 (- 1/sqrt(3)) + cot^-1(1/sqrt(3)) + tan^-1(sin((-pi)/2))`
Which of the following is the principal value branch of cos–1x?
Which of the following is the principal value branch of cosec–1x?
The value of `sin^-1 [cos((33pi)/5)]` is ______.
The value of sin (2 tan–1(0.75)) is equal to ______.
If tan–1x + tan–1y = `(4pi)/5`, then cot–1x + cot–1y equals ______.
The principal value of `tan^-1 sqrt(3)` is ______.
The least numerical value, either positive or negative of angle θ is called principal value of the inverse trigonometric function.
The minimum value of n for which `tan^-1 "n"/pi > pi/4`, n ∈ N, is valid is 5.
The principal value of `sin^-1 [cos(sin^-1 1/2)]` is `pi/3`.
If `5 sin theta = 3 "then", (sec theta + tan theta)/(sec theta - tan theta)` is equal to ____________.
Which of the following is the principal value branch of `"cos"^-1 "x"`
What is the principle value of `sin^-1 (1/sqrt(2))`?
Assertion (A): Maximum value of (cos–1 x)2 is π2.
Reason (R): Range of the principal value branch of cos–1 x is `[(-π)/2, π/2]`.
Evaluate `sin^-1 (sin (3π)/4) + cos^-1 (cos π) + tan^-1 (1)`.