English

Find the Principal Value of the Following: `Sec^-1(2)` - Mathematics

Advertisements
Advertisements

Question

Find the principal value of the following:

`sec^-1(2)`

Solution

Let `sec^-1(2)=y`
Then,
sec y = 2
We know that the range of the principal value branch is `[0,pi]-{pi/2}.`
Thus,
`secy=2=sec(pi/3)`

`=>y=pi/3in[0,pi],y!=pi/2`

Hence, the principal value of `sec^-1(2)   is    pi/3. `

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.04 [Page 18]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.04 | Q 1.2 | Page 18

RELATED QUESTIONS

Prove that `sin^(-1) (3/5) + cos^(-1) (12/13) = sin^(-1) (56/65)`


Solve `3tan^(-1)x + cot^(-1) x = pi`


if `tan^(-1) a + tan^(-1) b + tan^(-1) x = pi`, prove that a + b + c = abc 


Find the principal value of the following:

`sin^-1(cos  (2pi)/3)`


Find the principal value of the following:

`tan^-1(1/sqrt3)`


For the principal value, evaluate of the following:

`tan^-1{2sin(4cos^-1  sqrt3/2)}`


Find the principal value of the following:

`sec^-1(-sqrt2)`


Find the principal value of the following:

`sec^-1(2sin  (3pi)/4)`


​Find the principal value of the following:

`\text(cosec)^-1(2/sqrt3)`


For the principal value, evaluate the following:

`sin^-1[cos{2\text(cosec)^-1(-2)}]`


For the principal value, evaluate the following:

`cosec^-1(2tan  (11pi)/6)`


If `sin^-1"x" + tan^-1"x" = pi/2`, prove that `2"x"^2 + 1 = sqrt5`  


The index number by the method of aggregates for the year 2010, taking 2000 as the base year, was found to be 116. If sum of the prices in the year 2000 is ₹ 300, find the values of x and y in the data given below

Commodity A B C D E F
Price in the year 2000 (₹) 50 x 30 70 116 20
Price in the year 2010 (₹) 60 24 80  120 28

Find the value of `tan^-1 (tan  (9pi)/8)`.


Find the value of `sin(2tan^-1  2/3) + cos(tan^-1 sqrt(3))`


The value of `sin^-1 (cos((43pi)/5))` is ______.


The domain of sin–1 2x is ______.


The value of sin (2 sin–1 (.6)) is ______.


The value of `tan(cos^-1  3/5 + tan^-1  1/4)` is ______.


The value of the expression sin [cot–1 (cos (tan–11))] is ______.


Find the value of `tan^-1 (- 1/sqrt(3)) + cot^-1(1/sqrt(3)) + tan^-1(sin((-pi)/2))`


Find the value of `tan^-1 (tan  (2pi)/3)`


Which of the following is the principal value branch of cos–1x?


Which of the following is the principal value branch of cosec–1x?


The domain of the function defined by f(x) = `sin^-1 sqrt(x- 1)` is ______.


If tan–1x + tan–1y = `(4pi)/5`, then cot–1x + cot–1y equals ______.


If `cos(tan^-1x + cot^-1 sqrt(3))` = 0, then value of x is ______.


The value of the expression (cos–1x)2 is equal to sec2x.


The least numerical value, either positive or negative of angle θ is called principal value of the inverse trigonometric function.


The minimum value of n for which `tan^-1  "n"/pi > pi/4`, n ∈ N, is valid is 5.


The principal value of `sin^-1 [cos(sin^-1  1/2)]` is `pi/3`.


If `5 sin theta = 3  "then", (sec theta + tan theta)/(sec theta - tan theta)` is equal to ____________.


What is the value of `tan^-1(1) cos^-1(- 1/2) + sin^-1(- 1/2)`


Assertion (A): Maximum value of (cos–1 x)2 is π2.

Reason (R): Range of the principal value branch of cos–1 x is `[(-π)/2, π/2]`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×