Advertisements
Advertisements
Question
Find the principal value of the following:
`sec^-1(2)`
Solution
Let `sec^-1(2)=y`
Then,
sec y = 2
We know that the range of the principal value branch is `[0,pi]-{pi/2}.`
Thus,
`secy=2=sec(pi/3)`
`=>y=pi/3in[0,pi],y!=pi/2`
Hence, the principal value of `sec^-1(2) is pi/3. `
APPEARS IN
RELATED QUESTIONS
Prove that `sin^(-1) (3/5) + cos^(-1) (12/13) = sin^(-1) (56/65)`
Solve `3tan^(-1)x + cot^(-1) x = pi`
if `tan^(-1) a + tan^(-1) b + tan^(-1) x = pi`, prove that a + b + c = abc
Find the principal value of the following:
`sin^-1(cos (2pi)/3)`
Find the principal value of the following:
`tan^-1(1/sqrt3)`
For the principal value, evaluate of the following:
`tan^-1{2sin(4cos^-1 sqrt3/2)}`
Find the principal value of the following:
`sec^-1(-sqrt2)`
Find the principal value of the following:
`sec^-1(2sin (3pi)/4)`
Find the principal value of the following:
`\text(cosec)^-1(2/sqrt3)`
For the principal value, evaluate the following:
`sin^-1[cos{2\text(cosec)^-1(-2)}]`
For the principal value, evaluate the following:
`cosec^-1(2tan (11pi)/6)`
If `sin^-1"x" + tan^-1"x" = pi/2`, prove that `2"x"^2 + 1 = sqrt5`
The index number by the method of aggregates for the year 2010, taking 2000 as the base year, was found to be 116. If sum of the prices in the year 2000 is ₹ 300, find the values of x and y in the data given below
Commodity | A | B | C | D | E | F |
Price in the year 2000 (₹) | 50 | x | 30 | 70 | 116 | 20 |
Price in the year 2010 (₹) | 60 | 24 | y | 80 | 120 | 28 |
Find the value of `tan^-1 (tan (9pi)/8)`.
Find the value of `sin(2tan^-1 2/3) + cos(tan^-1 sqrt(3))`
The value of `sin^-1 (cos((43pi)/5))` is ______.
The domain of sin–1 2x is ______.
The value of sin (2 sin–1 (.6)) is ______.
The value of `tan(cos^-1 3/5 + tan^-1 1/4)` is ______.
The value of the expression sin [cot–1 (cos (tan–11))] is ______.
Find the value of `tan^-1 (- 1/sqrt(3)) + cot^-1(1/sqrt(3)) + tan^-1(sin((-pi)/2))`
Find the value of `tan^-1 (tan (2pi)/3)`
Which of the following is the principal value branch of cos–1x?
Which of the following is the principal value branch of cosec–1x?
The domain of the function defined by f(x) = `sin^-1 sqrt(x- 1)` is ______.
If tan–1x + tan–1y = `(4pi)/5`, then cot–1x + cot–1y equals ______.
If `cos(tan^-1x + cot^-1 sqrt(3))` = 0, then value of x is ______.
The value of the expression (cos–1x)2 is equal to sec2x.
The least numerical value, either positive or negative of angle θ is called principal value of the inverse trigonometric function.
The minimum value of n for which `tan^-1 "n"/pi > pi/4`, n ∈ N, is valid is 5.
The principal value of `sin^-1 [cos(sin^-1 1/2)]` is `pi/3`.
If `5 sin theta = 3 "then", (sec theta + tan theta)/(sec theta - tan theta)` is equal to ____________.
What is the value of `tan^-1(1) cos^-1(- 1/2) + sin^-1(- 1/2)`
Assertion (A): Maximum value of (cos–1 x)2 is π2.
Reason (R): Range of the principal value branch of cos–1 x is `[(-π)/2, π/2]`.