Advertisements
Advertisements
Question
The value of `sin^-1 (cos((43pi)/5))` is ______.
Options
`(3pi)/5`
`(-7pi)/5`
`pi/10`
`- pi/10`
Solution
The value of `sin^-1 (cos((43pi)/5))` is `- pi/10`.
Explanation:
`sin^-1 (cos (40pi + 3pi)/5) = sin^-1 cos(8pi + (3pi)/5)`
= `sin^-1 (cos (3pi)/5)`
= `sin^-1 (sin(pi/2 - (3pi)/5))`
= `sin^-1 (sin(- pi/10))`
= `- pi/10`.
APPEARS IN
RELATED QUESTIONS
The principal solution of the equation cot x=`-sqrt 3 ` is
Prove that `sin^(-1) (3/5) + cos^(-1) (12/13) = sin^(-1) (56/65)`
Find the value of `tan^(-1) sqrt3 - cot^(-1) (-sqrt3)`
Find the principal value of the following:
`sin^-1(cos (2pi)/3)`
Find the principal value of the following:
`sin^-1((sqrt3-1)/(2sqrt2))`
Find the principal value of the following:
`sin^-1(tan (5pi)/4)`
For the principal value, evaluate of the following:
`cos^-1 1/2+2sin^-1 (1/2)`
For the principal value, evaluate of the following:
`sin^-1(-1/2)+2cos^-1(-sqrt3/2)`
For the principal value, evaluate of the following:
`sin^-1(-sqrt3/2)+cos^-1(sqrt3/2)`
Find the principal value of the following:
`tan^-1(1/sqrt3)`
Find the principal value of the following:
`cosec^-1(-sqrt2)`
Find the principal value of the following:
`cot^-1(tan (3pi)/4)`
If `sin^-1"x" + tan^-1"x" = pi/2`, prove that `2"x"^2 + 1 = sqrt5`
Find the value of `cos^-1(cos (13pi)/6)`.
Find the value of `sec(tan^-1 y/2)`
Find value of tan (cos–1x) and hence evaluate `tan(cos^-1 8/17)`
Find the value of `sin(2tan^-1 2/3) + cos(tan^-1 sqrt(3))`
Let θ = sin–1 (sin (– 600°), then value of θ is ______.
The value of the expression sin [cot–1 (cos (tan–11))] is ______.
Find the value of `tan^-1 (- 1/sqrt(3)) + cot^-1(1/sqrt(3)) + tan^-1(sin((-pi)/2))`
The value of `sin^-1 [cos((33pi)/5)]` is ______.
The domain of the function cos–1(2x – 1) is ______.
If tan–1x + tan–1y = `(4pi)/5`, then cot–1x + cot–1y equals ______.
If `cos(tan^-1x + cot^-1 sqrt(3))` = 0, then value of x is ______.
The minimum value of n for which `tan^-1 "n"/pi > pi/4`, n ∈ N, is valid is 5.
`2 "cos"^-1 "x = sin"^-1 (2"x" sqrt(1 - "x"^2))` is true for ____________.
If `"tan"^-1 ("a"/"x") + "tan"^-1 ("b"/"x") = pi/2,` then x is equal to ____________.
Assertion (A): Maximum value of (cos–1 x)2 is π2.
Reason (R): Range of the principal value branch of cos–1 x is `[(-π)/2, π/2]`.