English

The value of sin-1[cos(33π5)] is ______. - Mathematics

Advertisements
Advertisements

Question

The value of `sin^-1 [cos((33pi)/5)]` is ______.

Options

  • `(3pi)/5`

  • `(-7pi)/5`

  • `pi/10`

  • `(-pi)/10`

MCQ
Fill in the Blanks

Solution

The value of `sin^-1 [cos((33pi)/5)]` is `(-pi)/10`.

Explanation:

`sin^-1 [cos((33pi)/5)] = sin^-1[cos(6pi + (3pi)/5)]`

= `sin^-1[cos  (3pi)/5]` .......[∵ cos(2nπ + x) = cos x]

= `sin^-1 [cos(pi/2 + pi/10)]`

= `sin^-1[-sin (pi/10)]`  ......`[because cos(pi/2 + theta) = - sin theta]`

= `sin^-1[sin((-pi)/10)]`

= `(-pi)/10`

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Inverse Trigonometric Functions - Exercise [Page 37]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 2 Inverse Trigonometric Functions
Exercise | Q 23 | Page 37

RELATED QUESTIONS

The principal solution of `cos^-1(-1/2)` is :


if `tan^(-1) a + tan^(-1) b + tan^(-1) x = pi`, prove that a + b + c = abc 


Find the principal value of the following:

`sin^-1(tan  (5pi)/4)`


For the principal value, evaluate of the following:

`cos^-1  1/2+2sin^-1  (1/2)`


For the principal value, evaluate of the following:

`sin^-1(-1/2)+2cos^-1(-sqrt3/2)`


Find the principal value of the following:

`tan^-1(-1/sqrt3)`


For the principal value, evaluate of the following:

`tan^-1{2sin(4cos^-1  sqrt3/2)}`


​Find the principal value of the following:

`cosec^-1(2cos  (2pi)/3)`


Find the principal value of the following:

`cot^-1(tan  (3pi)/4)`


Show that `"sin"^-1(5/13) + "cos"^-1(3/5) = "tan"^-1(63/16)`


Show that `"sin"^-1(5/13) + "cos"^-1(3/5) = "tan"^-1(63/16)`


if sec-1  x = cosec-1  v. show that `1/x^2 + 1/y^2 = 1`


If `sin^-1"x" + tan^-1"x" = pi/2`, prove that `2"x"^2 + 1 = sqrt5`  


Find the value of `sin(2tan^-1  2/3) + cos(tan^-1 sqrt(3))`


The principal value branch of sec–1 is ______.


The value of `sin^-1 (cos((43pi)/5))` is ______.


The principal value of the expression cos–1[cos (– 680°)] is ______.


The value of sin (2 sin–1 (.6)) is ______.


Find the value of `4tan^-1  1/5 - tan^-1  1/239`


The set of values of `sec^-1 (1/2)` is ______.


The value of expression `tan((sin^-1x + cos^-1x)/2)`, when x = `sqrt(3)/2` is ______.


The result `tan^1x - tan^-1y = tan^-1 ((x - y)/(1 + xy))` is true when value of xy is ______.


The domain of trigonometric functions can be restricted to any one of their branch (not necessarily principal value) in order to obtain their inverse functions.


The principal value of `sin^-1 [cos(sin^-1  1/2)]` is `pi/3`.


If `5 sin theta = 3  "then", (sec theta + tan theta)/(sec theta - tan theta)` is equal to ____________.


The general solution of the equation `"cot"  theta - "tan"  theta = "sec"  theta` is ____________ where `(n in I).`


If `"tan"^-1 ("a"/"x") + "tan"^-1 ("b"/"x") = pi/2,` then x is equal to ____________.


What is the value of `tan^-1(1) cos^-1(- 1/2) + sin^-1(- 1/2)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×