Advertisements
Advertisements
Question
Find the principal value of the following:
`cot^-1(tan (3pi)/4)`
Solution
Let `cot^-1(tan (3pi)/4) = y`
Then,
`coty=tan (3pi)/4`
We know that the range of the principal value branch is (0, π).
Thus,
`coty=tan (3pi)/4=-1=cot((3pi)/4)`
`=>y=(3pi)/4in(0,pi)`
Hence, the principal value of `cot^-1(tan (3pi)/4) is (3pi)/4.`
APPEARS IN
RELATED QUESTIONS
Prove that `sin^(-1) (3/5) + cos^(-1) (12/13) = sin^(-1) (56/65)`
Find the principal value of the following:
`sin^-1(cos (2pi)/3)`
Find the principal value of the following:
`sin^-1((sqrt3+1)/(2sqrt2))`
For the principal value, evaluate of the following:
`cos^-1 1/2+2sin^-1 (1/2)`
Find the principal value of the following:
`tan^-1(2cos (2pi)/3)`
For the principal value, evaluate of the following:
`tan^-1{2sin(4cos^-1 sqrt3/2)}`
Find the principal value of the following:
`sec^-1(-sqrt2)`
Find the principal value of the following:
`cosec^-1(-sqrt2)`
Find the principal value of the following:
cosec-1(-2)
Find the principal value of the following:
`\text(cosec)^-1(2/sqrt3)`
Find the principal value of the following:
`cot^-1(-sqrt3)`
Find the principal value of the following:
`cot^-1(-1/sqrt3)`
Show that `"sin"^-1(5/13) + "cos"^-1(3/5) = "tan"^-1(63/16)`
Solve for x, if:
tan (cos-1x) = `2/sqrt5`
If `sin^-1"x" + tan^-1"x" = pi/2`, prove that `2"x"^2 + 1 = sqrt5`
The index number by the method of aggregates for the year 2010, taking 2000 as the base year, was found to be 116. If sum of the prices in the year 2000 is ₹ 300, find the values of x and y in the data given below
Commodity | A | B | C | D | E | F |
Price in the year 2000 (₹) | 50 | x | 30 | 70 | 116 | 20 |
Price in the year 2010 (₹) | 60 | 24 | y | 80 | 120 | 28 |
Find the principal value of cos–1x, for x = `sqrt(3)/2`.
Find value of tan (cos–1x) and hence evaluate `tan(cos^-1 8/17)`
The value of `sin^-1 (cos((43pi)/5))` is ______.
The value of `tan(cos^-1 3/5 + tan^-1 1/4)` is ______.
The value of the expression sin [cot–1 (cos (tan–11))] is ______.
Find the value of `tan^-1 (tan (5pi)/6) +cos^-1(cos (13pi)/6)`
The value of `sin^-1 [cos((33pi)/5)]` is ______.
The domain of the function defined by f(x) = `sin^-1 sqrt(x- 1)` is ______.
The value of the expression `2 sec^-1 2 + sin^-1 (1/2)` is ______.
If tan–1x + tan–1y = `(4pi)/5`, then cot–1x + cot–1y equals ______.
If `cos(tan^-1x + cot^-1 sqrt(3))` = 0, then value of x is ______.
The set of values of `sec^-1 (1/2)` is ______.
The value of `cos^-1 (cos (14pi)/3)` is ______.
The value of cos (sin–1x + cos–1x), |x| ≤ 1 is ______.
The domain of trigonometric functions can be restricted to any one of their branch (not necessarily principal value) in order to obtain their inverse functions.
The least numerical value, either positive or negative of angle θ is called principal value of the inverse trigonometric function.
`2 "cos"^-1 "x = sin"^-1 (2"x" sqrt(1 - "x"^2))` is true for ____________.
What is the value of x so that the seven-digit number 8439 × 53 is divisible by 99?
What is the principle value of `sin^-1 (1/sqrt(2))`?
What is the principal value of `cot^-1 ((-1)/sqrt(3))`?
Assertion (A): Maximum value of (cos–1 x)2 is π2.
Reason (R): Range of the principal value branch of cos–1 x is `[(-π)/2, π/2]`.