Advertisements
Advertisements
Question
For the principal value, evaluate of the following:
`cos^-1 1/2+2sin^-1 (1/2)`
Solution
`cos^-1(cosx)=x`
`sin^-1(sinx)=x`
`cos^-1 1/2+2sin^-1 (1/2)`
`=cos^-1(cos pi/3)+2sin^-1(sin pi/6)`
`=pi/3+2(pi/6)`
`=(2pi)/3`
APPEARS IN
RELATED QUESTIONS
Write the principal value of `tan^(-1)+cos^(-1)(-1/2)`
Prove that `sin^(-1) (3/5) + cos^(-1) (12/13) = sin^(-1) (56/65)`
Find the value of `tan^(-1) sqrt3 - cot^(-1) (-sqrt3)`
Solve `3tan^(-1)x + cot^(-1) x = pi`
if `tan^(-1) a + tan^(-1) b + tan^(-1) x = pi`, prove that a + b + c = abc
Find the principal value of the following:
`sin^-1(tan (5pi)/4)`
For the principal value, evaluate of the following:
`sin^-1(-sqrt3/2)+cos^-1(sqrt3/2)`
For the principal value, evaluate of the following:
`tan^-1(-1)+cos^-1(-1/sqrt2)`
Find the principal value of the following:
`sec^-1(2)`
Find the principal value of the following:
`cosec^-1(2cos (2pi)/3)`
For the principal value, evaluate the following:
`sin^-1[cos{2\text(cosec)^-1(-2)}]`
For the principal value, evaluate the following:
`cosec^-1(2tan (11pi)/6)`
Find the principal value of the following:
`cot^-1(-sqrt3)`
Show that `"sin"^-1(5/13) + "cos"^-1(3/5) = "tan"^-1(63/16)`
Solve for x, if:
tan (cos-1x) = `2/sqrt5`
If `sin^-1"x" + tan^-1"x" = pi/2`, prove that `2"x"^2 + 1 = sqrt5`
Find the principal value of cos–1x, for x = `sqrt(3)/2`.
Find the value of `cos^-1(cos (13pi)/6)`.
Find the value of `tan^-1 (tan (9pi)/8)`.
Prove that tan(cot–1x) = cot(tan–1x). State with reason whether the equality is valid for all values of x.
Find the value of `sin(2tan^-1 2/3) + cos(tan^-1 sqrt(3))`
The principal value branch of sec–1 is ______.
One branch of cos–1 other than the principal value branch corresponds to ______.
The value of cot (sin–1x) is ______.
The greatest and least values of (sin–1x)2 + (cos–1x)2 are respectively ______.
The value of the expression sin [cot–1 (cos (tan–11))] is ______.
Find the value of `tan^-1 (tan (5pi)/6) +cos^-1(cos (13pi)/6)`
The value of `sin^-1 [cos((33pi)/5)]` is ______.
If `cos(sin^-1 2/5 + cos^-1x)` = 0, then x is equal to ______.
The value of sin (2 tan–1(0.75)) is equal to ______.
If tan–1x + tan–1y = `(4pi)/5`, then cot–1x + cot–1y equals ______.
The value of cos (sin–1x + cos–1x), |x| ≤ 1 is ______.
The value of the expression (cos–1x)2 is equal to sec2x.
The period of the function f(x) = cos4x + tan3x is ____________.
`2 "cos"^-1 "x = sin"^-1 (2"x" sqrt(1 - "x"^2))` is true for ____________.