English

Find the value of tan-1(tan 5π6)+cos-1(cos 13π6) - Mathematics

Advertisements
Advertisements

Question

Find the value of `tan^-1 (tan  (5pi)/6) +cos^-1(cos  (13pi)/6)`

Sum

Solution

We know that `(5pi)/6 ∉ (- pi/2, pi/2)` and `(13pi)/6 ∉ [0, pi]`

∴ `tan^-1 (tan  (5pi)/6) + cos^1(cos  (13pi)/6)`

= `tan^-1 [tan (pi - pi/6)] + cos^-1[cos(2pi + pi/6)]`

= `tan^-1[tan(- pi/6)] + cos^-1(cos  pi/6)`

= `tan^-1 (tan  pi/6)+ cos^-1 (cos  pi/6)`

= `- tan^-1 (tan  pi/6) + cos^-1(cos  pi/6)`  .....[∵ tan–1(– x) = – tan– 1x]

= `- pi/6 + pi/6`

= 0

Hence, `tan^-1 (tan  (5pi)/6) +cos^-1(cos  (13pi)/6)` = 0

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Inverse Trigonometric Functions - Exercise [Page 35]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 2 Inverse Trigonometric Functions
Exercise | Q 1 | Page 35

RELATED QUESTIONS

Prove that `sin^(-1) (3/5) + cos^(-1) (12/13) = sin^(-1) (56/65)`


Find the principal value of the following:

`sin^-1(-sqrt3/2)`


Find the principal value of the following:

`sin^-1(tan  (5pi)/4)`


For the principal value, evaluate of the following:

`sin^-1(-1/2)+2cos^-1(-sqrt3/2)`


Find the principal value of the following:

`tan^-1(-1/sqrt3)`


For the principal value, evaluate of the following:

`tan^-1(-1)+cos^-1(-1/sqrt2)`


Find the principal value of the following:

`sec^-1(2tan  (3pi)/4)`


​Find the principal value of the following:

`cosec^-1(2cos  (2pi)/3)`


For the principal value, evaluate the following:

`sin^-1(-sqrt3/2)+\text{cosec}^-1(-2/sqrt3)`


Find the principal value of the following:

`cot^-1(tan  (3pi)/4)`


If `sin^-1"x" + tan^-1"x" = pi/2`, prove that `2"x"^2 + 1 = sqrt5`  


Find the principal value of cos–1x, for x = `sqrt(3)/2`.


Prove that tan(cot–1x) = cot(tan–1x). State with reason whether the equality is valid for all values of x.


Find the value of `sin[2cot^-1 ((-5)/12)]`


Find the value of `tan^-1 (- 1/sqrt(3)) + cot^-1(1/sqrt(3)) + tan^-1(sin((-pi)/2))`


Find the value of `4tan^-1  1/5 - tan^-1  1/239`


The domain of the function defined by f(x) = `sin^-1 sqrt(x- 1)` is ______.


The value of sin (2 tan–1(0.75)) is equal to ______.


If tan–1x + tan–1y = `(4pi)/5`, then cot–1x + cot–1y equals ______.


The principal value of `cos^-1 (- 1/2)` is ______.


The result `tan^1x - tan^-1y = tan^-1 ((x - y)/(1 + xy))` is true when value of xy is ______.


The value of the expression (cos–1x)2 is equal to sec2x.


The principal value of `sin^-1 [cos(sin^-1  1/2)]` is `pi/3`.


If `5 sin theta = 3  "then", (sec theta + tan theta)/(sec theta - tan theta)` is equal to ____________.


The general solution of the equation `"cot"  theta - "tan"  theta = "sec"  theta` is ____________ where `(n in I).`


Which of the following is the principal value branch of `"cos"^-1 "x"`


What is the value of `tan^-1(1) cos^-1(- 1/2) + sin^-1(- 1/2)`


Evaluate `sin^-1 (sin  (3π)/4) + cos^-1 (cos π) + tan^-1 (1)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×