Advertisements
Advertisements
Question
Find the value of `tan^-1 (tan (5pi)/6) +cos^-1(cos (13pi)/6)`
Solution
We know that `(5pi)/6 ∉ (- pi/2, pi/2)` and `(13pi)/6 ∉ [0, pi]`
∴ `tan^-1 (tan (5pi)/6) + cos^1(cos (13pi)/6)`
= `tan^-1 [tan (pi - pi/6)] + cos^-1[cos(2pi + pi/6)]`
= `tan^-1[tan(- pi/6)] + cos^-1(cos pi/6)`
= `tan^-1 (tan pi/6)+ cos^-1 (cos pi/6)`
= `- tan^-1 (tan pi/6) + cos^-1(cos pi/6)` .....[∵ tan–1(– x) = – tan– 1x]
= `- pi/6 + pi/6`
= 0
Hence, `tan^-1 (tan (5pi)/6) +cos^-1(cos (13pi)/6)` = 0
APPEARS IN
RELATED QUESTIONS
Prove that `sin^(-1) (3/5) + cos^(-1) (12/13) = sin^(-1) (56/65)`
Find the principal value of the following:
`sin^-1(-sqrt3/2)`
Find the principal value of the following:
`sin^-1(tan (5pi)/4)`
For the principal value, evaluate of the following:
`sin^-1(-1/2)+2cos^-1(-sqrt3/2)`
Find the principal value of the following:
`tan^-1(-1/sqrt3)`
For the principal value, evaluate of the following:
`tan^-1(-1)+cos^-1(-1/sqrt2)`
Find the principal value of the following:
`sec^-1(2tan (3pi)/4)`
Find the principal value of the following:
`cosec^-1(2cos (2pi)/3)`
For the principal value, evaluate the following:
`sin^-1(-sqrt3/2)+\text{cosec}^-1(-2/sqrt3)`
Find the principal value of the following:
`cot^-1(tan (3pi)/4)`
If `sin^-1"x" + tan^-1"x" = pi/2`, prove that `2"x"^2 + 1 = sqrt5`
Find the principal value of cos–1x, for x = `sqrt(3)/2`.
Prove that tan(cot–1x) = cot(tan–1x). State with reason whether the equality is valid for all values of x.
Find the value of `sin[2cot^-1 ((-5)/12)]`
Find the value of `tan^-1 (- 1/sqrt(3)) + cot^-1(1/sqrt(3)) + tan^-1(sin((-pi)/2))`
Find the value of `4tan^-1 1/5 - tan^-1 1/239`
The domain of the function defined by f(x) = `sin^-1 sqrt(x- 1)` is ______.
The value of sin (2 tan–1(0.75)) is equal to ______.
If tan–1x + tan–1y = `(4pi)/5`, then cot–1x + cot–1y equals ______.
The principal value of `cos^-1 (- 1/2)` is ______.
The result `tan^1x - tan^-1y = tan^-1 ((x - y)/(1 + xy))` is true when value of xy is ______.
The value of the expression (cos–1x)2 is equal to sec2x.
The principal value of `sin^-1 [cos(sin^-1 1/2)]` is `pi/3`.
If `5 sin theta = 3 "then", (sec theta + tan theta)/(sec theta - tan theta)` is equal to ____________.
The general solution of the equation `"cot" theta - "tan" theta = "sec" theta` is ____________ where `(n in I).`
Which of the following is the principal value branch of `"cos"^-1 "x"`
What is the value of `tan^-1(1) cos^-1(- 1/2) + sin^-1(- 1/2)`
Evaluate `sin^-1 (sin (3π)/4) + cos^-1 (cos π) + tan^-1 (1)`.