Advertisements
Advertisements
Question
Find the principal value of the following:
`tan^-1(-1/sqrt3)`
Solution
We have `tan^-1(-1/sqrt3)=-tan^-1(1/sqrt3)` `[because tan^-1(-x)=-tan^-1x]`
Let `tan^-1(1/sqrt3)=y`
Then,
`tany=1/sqrt3`
We know that the range of the principal value branch is `(-pi/2,pi/2)`
Thus,
`tany=1/sqrt3=tan(pi/6)`
`=>y = pi/6`
`therefore tan^-1(-1/sqrt3)=-tan^-1(1/sqrt3)`
= - y
`=-pi/6in(-pi/2,pi/2)`
Hence, the principal value of `tan^-1(-1/sqrt3) is -pi/6.`
APPEARS IN
RELATED QUESTIONS
Write the principal value of `tan^(-1)+cos^(-1)(-1/2)`
The principal solution of the equation cot x=`-sqrt 3 ` is
Find the value of `tan^(-1) sqrt3 - cot^(-1) (-sqrt3)`
Solve `3tan^(-1)x + cot^(-1) x = pi`
Find the principal value of the following:
`sin^-1(-sqrt3/2)`
Find the principal value of the following:
`sin^-1(cos (2pi)/3)`
Find the principal value of the following:
`sin^-1((sqrt3-1)/(2sqrt2))`
Find the principal value of the following:
`sin^-1((sqrt3+1)/(2sqrt2))`
For the principal value, evaluate of the following:
`cos^-1 1/2+2sin^-1 (1/2)`
Find the principal value of the following:
`sec^-1(2sin (3pi)/4)`
For the principal value, evaluate the following:
`tan^-1sqrt3-sec^-1(-2)`
For the principal value, evaluate the following:
`sin^-1(-sqrt3/2)-2sec^-1(2tan pi/6)`
Find the principal value of the following:
cosec-1(-2)
Find the principal value of the following:
`cosec^-1(2cos (2pi)/3)`
For the principal value, evaluate the following:
`sin^-1[cos{2\text(cosec)^-1(-2)}]`
Find the principal value of the following:
`cot^-1(-sqrt3)`
Find the value of `sin(2tan^-1 2/3) + cos(tan^-1 sqrt(3))`
Which of the following corresponds to the principal value branch of tan–1?
The principal value branch of sec–1 is ______.
One branch of cos–1 other than the principal value branch corresponds to ______.
The value of cot (sin–1x) is ______.
The principal value of `sin^-1 ((-sqrt(3))/2)` is ______.
The value of tan2 (sec–12) + cot2 (cosec–13) is ______.
The domain of the function defined by f(x) = `sin^-1 sqrt(x- 1)` is ______.
If `cos(sin^-1 2/5 + cos^-1x)` = 0, then x is equal to ______.
If tan–1x + tan–1y = `(4pi)/5`, then cot–1x + cot–1y equals ______.
The value of `sin^-1 (sin (3pi)/5)` is ______.
The principal value of `tan^-1 sqrt(3)` is ______.
The value of cos (sin–1x + cos–1x), |x| ≤ 1 is ______.
The value of expression `tan((sin^-1x + cos^-1x)/2)`, when x = `sqrt(3)/2` is ______.
`2 "cos"^-1 "x = sin"^-1 (2"x" sqrt(1 - "x"^2))` is true for ____________.
What is the principle value of `sin^-1 (1/sqrt(2))`?
Assertion (A): Maximum value of (cos–1 x)2 is π2.
Reason (R): Range of the principal value branch of cos–1 x is `[(-π)/2, π/2]`.
Evaluate `sin^-1 (sin (3π)/4) + cos^-1 (cos π) + tan^-1 (1)`.