Advertisements
Advertisements
प्रश्न
Find the principal value of the following:
`tan^-1(-1/sqrt3)`
उत्तर
We have `tan^-1(-1/sqrt3)=-tan^-1(1/sqrt3)` `[because tan^-1(-x)=-tan^-1x]`
Let `tan^-1(1/sqrt3)=y`
Then,
`tany=1/sqrt3`
We know that the range of the principal value branch is `(-pi/2,pi/2)`
Thus,
`tany=1/sqrt3=tan(pi/6)`
`=>y = pi/6`
`therefore tan^-1(-1/sqrt3)=-tan^-1(1/sqrt3)`
= - y
`=-pi/6in(-pi/2,pi/2)`
Hence, the principal value of `tan^-1(-1/sqrt3) is -pi/6.`
APPEARS IN
संबंधित प्रश्न
For the principal value, evaluate of the following:
`tan^-1(-1)+cos^-1(-1/sqrt2)`
For the principal value, evaluate of the following:
`tan^-1{2sin(4cos^-1 sqrt3/2)}`
For the principal value, evaluate the following:
`sin^-1(-sqrt3/2)-2sec^-1(2tan pi/6)`
Find the principal value of the following:
`cosec^-1(-sqrt2)`
Find the principal value of the following:
`\text(cosec)^-1(2/sqrt3)`
For the principal value, evaluate the following:
`sin^-1[cos{2\text(cosec)^-1(-2)}]`
For the principal value, evaluate the following:
`cosec^-1(2tan (11pi)/6)`
Find the principal value of the following:
`cot^-1(tan (3pi)/4)`
Show that `"sin"^-1(5/13) + "cos"^-1(3/5) = "tan"^-1(63/16)`
If `sin^-1"x" + tan^-1"x" = pi/2`, prove that `2"x"^2 + 1 = sqrt5`
The index number by the method of aggregates for the year 2010, taking 2000 as the base year, was found to be 116. If sum of the prices in the year 2000 is ₹ 300, find the values of x and y in the data given below
Commodity | A | B | C | D | E | F |
Price in the year 2000 (₹) | 50 | x | 30 | 70 | 116 | 20 |
Price in the year 2010 (₹) | 60 | 24 | y | 80 | 120 | 28 |
Find the value of `tan^-1 (tan (9pi)/8)`.
Find the value of `sec(tan^-1 y/2)`
Find the value of `sin(2tan^-1 2/3) + cos(tan^-1 sqrt(3))`
The principal value branch of sec–1 is ______.
The value of `sin^-1 (cos((43pi)/5))` is ______.
One branch of cos–1 other than the principal value branch corresponds to ______.
The principal value of `sin^-1 ((-sqrt(3))/2)` is ______.
The value of sin (2 sin–1 (.6)) is ______.
Find the value of `tan^-1 (tan (2pi)/3)`
Find the value of the expression `sin(2tan^-1 1/3) + cos(tan^-1 2sqrt(2))`
Find the value of `4tan^-1 1/5 - tan^-1 1/239`
The domain of the function cos–1(2x – 1) is ______.
The domain of the function defined by f(x) = `sin^-1 sqrt(x- 1)` is ______.
The value of sin (2 tan–1(0.75)) is equal to ______.
The principal value of `cos^-1 (- 1/2)` is ______.
The principal value of `tan^-1 sqrt(3)` is ______.
The value of expression `tan((sin^-1x + cos^-1x)/2)`, when x = `sqrt(3)/2` is ______.
The least numerical value, either positive or negative of angle θ is called principal value of the inverse trigonometric function.
The principal value of `sin^-1 [cos(sin^-1 1/2)]` is `pi/3`.
If `"tan"^-1 "x" + "tan"^-1"y + tan"^-1 "z" = pi/2, "x,y,x" > 0,` then the value of xy+yz+zx is ____________.
Which of the following is the principal value branch of `"cos"^-1 "x"`
What is the principle value of `sin^-1 (1/sqrt(2))`?
What is the value of `tan^-1(1) cos^-1(- 1/2) + sin^-1(- 1/2)`