Advertisements
Advertisements
प्रश्न
For the principal value, evaluate the following:
`sin^-1[cos{2\text(cosec)^-1(-2)}]`
उत्तर
`sin^-1[cos{2\text(cosec)^-1(-2)}]=sin^-1[cos{2\text(cosec)^-1\text(cosec- )pi/6}]`
`=sin^-1[cos{-pi/3}]`
`=sin^-1[cos(pi/3)]`
`=sin^-1(1/2)`
`=sin^-1(sin π/6)`
`=pi/6`
APPEARS IN
संबंधित प्रश्न
Write the principal value of `tan^(-1)+cos^(-1)(-1/2)`
The principal solution of the equation cot x=`-sqrt 3 ` is
Find the principal value of the following:
`sin^-1((sqrt3-1)/(2sqrt2))`
For the principal value, evaluate of the following:
`sin^-1(-sqrt3/2)+cos^-1(sqrt3/2)`
Find the principal value of the following:
`tan^-1(1/sqrt3)`
For the principal value, evaluate of the following:
`tan^-1(-1)+cos^-1(-1/sqrt2)`
Find the principal value of the following:
`sec^-1(2)`
For the principal value, evaluate the following:
`sin^-1(-sqrt3/2)-2sec^-1(2tan pi/6)`
Find the principal value of the following:
`cosec^-1(2cos (2pi)/3)`
Show that `"sin"^-1(5/13) + "cos"^-1(3/5) = "tan"^-1(63/16)`
Solve for x, if:
tan (cos-1x) = `2/sqrt5`
Find the value of `sec(tan^-1 y/2)`
Which of the following corresponds to the principal value branch of tan–1?
One branch of cos–1 other than the principal value branch corresponds to ______.
The principal value of the expression cos–1[cos (– 680°)] is ______.
The domain of sin–1 2x is ______.
The value of the expression sin [cot–1 (cos (tan–11))] is ______.
Find the value of `4tan^-1 1/5 - tan^-1 1/239`
Which of the following is the principal value branch of cos–1x?
Which of the following is the principal value branch of cosec–1x?
The domain of the function cos–1(2x – 1) is ______.
The domain of the function defined by f(x) = `sin^-1 sqrt(x- 1)` is ______.
The value of sin (2 tan–1(0.75)) is equal to ______.
The value of `cos^-1 (cos (3pi)/2)` is equal to ______.
The value of `cot[cos^-1 (7/25)]` is ______.
The value of `sin^-1 (sin (3pi)/5)` is ______.
If `cos(tan^-1x + cot^-1 sqrt(3))` = 0, then value of x is ______.
The value of cos (sin–1x + cos–1x), |x| ≤ 1 is ______.
The value of the expression (cos–1x)2 is equal to sec2x.
The general solution of the equation `"cot" theta - "tan" theta = "sec" theta` is ____________ where `(n in I).`
`"cos" ["tan"^-1 {"sin" ("cot"^-1 "x")}]` is equal to ____________.
What is the value of x so that the seven-digit number 8439 × 53 is divisible by 99?
Evaluate `sin^-1 (sin (3π)/4) + cos^-1 (cos π) + tan^-1 (1)`.