हिंदी

​Find the Principal Value of the Following: `Cosec^-1(2cos (2pi)/3)` - Mathematics

Advertisements
Advertisements

प्रश्न

​Find the principal value of the following:

`cosec^-1(2cos  (2pi)/3)`

उत्तर

Let `cosec^-1(2cos  (2pi)/3)=y`

Then,

`cosec  y=2cos  (2pi)/3`

We know that the range of the principal value branch is `[-pi/2,pi/2]-{0}.`

Thus,

`cosec  y =2cos  (2pi)/3=2xx(-1)/2=-1=cosec(-pi/2).`

`=>y=-pi/2in[-pi/2,pi/2],y!=0`

Hence, the principal value of `cosec^-1(2cos  (2pi)/3)   is   -pi/2.`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.05 [पृष्ठ २१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.05 | Q 1.4 | पृष्ठ २१

संबंधित प्रश्न

The principal solution of the equation cot x=`-sqrt 3 ` is


Prove that `sin^(-1) (3/5) + cos^(-1) (12/13) = sin^(-1) (56/65)`


Solve `3tan^(-1)x + cot^(-1) x = pi`


Find the principal value of the following:

`sin^-1((sqrt3-1)/(2sqrt2))`


Find the principal value of the following:

`sin^-1(tan  (5pi)/4)`


For the principal value, evaluate of the following:

`cos^-1  1/2+2sin^-1  (1/2)`


For the principal value, evaluate of the following:

`sin^-1(-sqrt3/2)+cos^-1(sqrt3/2)`


​Find the principal value of the following:

cosec-1(-2)


For the principal value, evaluate the following:

`sec^-1(sqrt2)+2\text{cosec}^-1(-sqrt2)`


For the principal value, evaluate the following:

`cosec^-1(2tan  (11pi)/6)`


Find value of tan (cos–1x) and hence evaluate `tan(cos^-1  8/17)`


The value of `sin^-1 (cos((43pi)/5))` is ______.


The value of cot (sin–1x) is ______.


The domain of sin–1 2x is ______.


If sin–1x + sin–1y = `pi/2`, then value of cos–1x + cos–1y is ______.


The value of the expression sin [cot–1 (cos (tan–11))] is ______.


Find the value of `tan^-1 (tan  (2pi)/3)`


Find the value of the expression `sin(2tan^-1  1/3) + cos(tan^-1 2sqrt(2))`


The domain of the function cos–1(2x – 1) is ______.


The domain of the function defined by f(x) = `sin^-1 sqrt(x- 1)` is ______.


The value of `cos^-1 (cos  (3pi)/2)` is equal to ______.


The value of the expression `2 sec^-1 2 + sin^-1 (1/2)` is ______.


The principal value of `cos^-1 (- 1/2)` is ______.


The value of `sin^-1 (sin  (3pi)/5)` is ______.


If `cos(tan^-1x + cot^-1 sqrt(3))` = 0, then value of x is ______.


The value of cos (sin–1x + cos–1x), |x| ≤ 1 is ______.


The result `tan^1x - tan^-1y = tan^-1 ((x - y)/(1 + xy))` is true when value of xy is ______.


The value of the expression (cos–1x)2 is equal to sec2x.


The least numerical value, either positive or negative of angle θ is called principal value of the inverse trigonometric function.


The principal value of `sin^-1 [cos(sin^-1  1/2)]` is `pi/3`.


If `5 sin theta = 3  "then", (sec theta + tan theta)/(sec theta - tan theta)` is equal to ____________.


The general solution of the equation `"cot"  theta - "tan"  theta = "sec"  theta` is ____________ where `(n in I).`


If sin `("sin"^-1 1/5 + "cos"^-1 "x") = 1,` then the value of x is ____________.


If `"tan"^-1 ("a"/"x") + "tan"^-1 ("b"/"x") = pi/2,` then x is equal to ____________.


What is the value of x so that the seven-digit number 8439 × 53 is divisible by 99?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×