हिंदी

The value of the expression 2sec-12+sin-1(12) is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The value of the expression `2 sec^-1 2 + sin^-1 (1/2)` is ______.

विकल्प

  • `pi/6`

  • `(5pi)/6`

  • `(7pi)/6`

  • 1

MCQ
रिक्त स्थान भरें

उत्तर

The value of the expression `2 sec^-1 2 + sin^-1 (1/2)` is `(5pi)/6`.

Explanation:

`2 sec^-1 2 + sin^-1  1/2 = 2sec^-1 (sec  pi/3) + sin^-1 (sin  pi/6)`

= `2 * pi/3 + pi/6`

= `(2pi)/3 + pi/6`

= `(5pi)/6`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Inverse Trigonometric Functions - Exercise [पृष्ठ ३८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 2 Inverse Trigonometric Functions
Exercise | Q 29 | पृष्ठ ३८

संबंधित प्रश्न

The principal solution of `cos^-1(-1/2)` is :


Prove that `sin^(-1) (3/5) + cos^(-1) (12/13) = sin^(-1) (56/65)`


Solve `3tan^(-1)x + cot^(-1) x = pi`


Find the principal value of the following:

`sin^-1((sqrt3-1)/(2sqrt2))`


Find the principal value of the following:

`tan^-1(2cos  (2pi)/3)`


Find the principal value of the following:

`sec^-1(-sqrt2)`


Find the principal value of cos–1x, for x = `sqrt(3)/2`.


Find the value of `sin[2cot^-1 ((-5)/12)]`


Which of the following corresponds to the principal value branch of tan–1?


One branch of cos–1 other than the principal value branch corresponds to ______.


Let θ = sin–1 (sin (– 600°), then value of θ is ______.


The value of the expression sin [cot–1 (cos (tan–11))] is ______.


The value of tan2 (sec–12) + cot2 (cosec–13) is ______.


Find the value of `tan^-1 (tan  (5pi)/6) +cos^-1(cos  (13pi)/6)`


The value of `sin^-1 [cos((33pi)/5)]` is ______.


The domain of the function defined by f(x) = `sin^-1 sqrt(x- 1)` is ______.


If `cos(sin^-1  2/5 + cos^-1x)` = 0, then x is equal to ______.


The set of values of `sec^-1 (1/2)` is ______.


The principal value of `sin^-1 [cos(sin^-1  1/2)]` is `pi/3`.


The general solution of the equation `"cot"  theta - "tan"  theta = "sec"  theta` is ____________ where `(n in I).`


`2  "cos"^-1 "x = sin"^-1 (2"x" sqrt(1 - "x"^2))` is true for ____________.


If sin `("sin"^-1 1/5 + "cos"^-1 "x") = 1,` then the value of x is ____________.


`"sec" {"tan"^-1 (-"y"/3)}` is equal to ____________.


Which of the following is the principal value branch of `"cos"^-1 "x"`


What is the value of x so that the seven-digit number 8439 × 53 is divisible by 99?


Assertion (A): Maximum value of (cos–1 x)2 is π2.

Reason (R): Range of the principal value branch of cos–1 x is `[(-π)/2, π/2]`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×