Advertisements
Advertisements
प्रश्न
The value of the expression `2 sec^-1 2 + sin^-1 (1/2)` is ______.
विकल्प
`pi/6`
`(5pi)/6`
`(7pi)/6`
1
उत्तर
The value of the expression `2 sec^-1 2 + sin^-1 (1/2)` is `(5pi)/6`.
Explanation:
`2 sec^-1 2 + sin^-1 1/2 = 2sec^-1 (sec pi/3) + sin^-1 (sin pi/6)`
= `2 * pi/3 + pi/6`
= `(2pi)/3 + pi/6`
= `(5pi)/6`
APPEARS IN
संबंधित प्रश्न
The principal solution of `cos^-1(-1/2)` is :
Prove that `sin^(-1) (3/5) + cos^(-1) (12/13) = sin^(-1) (56/65)`
Solve `3tan^(-1)x + cot^(-1) x = pi`
Find the principal value of the following:
`sin^-1((sqrt3-1)/(2sqrt2))`
Find the principal value of the following:
`tan^-1(2cos (2pi)/3)`
Find the principal value of the following:
`sec^-1(-sqrt2)`
Find the principal value of cos–1x, for x = `sqrt(3)/2`.
Find the value of `sin[2cot^-1 ((-5)/12)]`
Which of the following corresponds to the principal value branch of tan–1?
One branch of cos–1 other than the principal value branch corresponds to ______.
Let θ = sin–1 (sin (– 600°), then value of θ is ______.
The value of the expression sin [cot–1 (cos (tan–11))] is ______.
The value of tan2 (sec–12) + cot2 (cosec–13) is ______.
Find the value of `tan^-1 (tan (5pi)/6) +cos^-1(cos (13pi)/6)`
The value of `sin^-1 [cos((33pi)/5)]` is ______.
The domain of the function defined by f(x) = `sin^-1 sqrt(x- 1)` is ______.
If `cos(sin^-1 2/5 + cos^-1x)` = 0, then x is equal to ______.
The set of values of `sec^-1 (1/2)` is ______.
The principal value of `sin^-1 [cos(sin^-1 1/2)]` is `pi/3`.
The general solution of the equation `"cot" theta - "tan" theta = "sec" theta` is ____________ where `(n in I).`
`2 "cos"^-1 "x = sin"^-1 (2"x" sqrt(1 - "x"^2))` is true for ____________.
If sin `("sin"^-1 1/5 + "cos"^-1 "x") = 1,` then the value of x is ____________.
`"sec" {"tan"^-1 (-"y"/3)}` is equal to ____________.
Which of the following is the principal value branch of `"cos"^-1 "x"`
What is the value of x so that the seven-digit number 8439 × 53 is divisible by 99?
Assertion (A): Maximum value of (cos–1 x)2 is π2.
Reason (R): Range of the principal value branch of cos–1 x is `[(-π)/2, π/2]`.