Advertisements
Advertisements
प्रश्न
The value of tan2 (sec–12) + cot2 (cosec–13) is ______.
विकल्प
5
11
13
15
उत्तर
The value of tan2 (sec–12) + cot2 (cosec–13) is 11.
Explanation:
tan2 (sec–12) + cot2 (cosec–13) = sec2 (sec–12) – 1 + cosec2 (cosec–13) – 1
= 22 × 1 + 32 – 2
= 11.
APPEARS IN
संबंधित प्रश्न
Find the principal value of the following:
`tan^-1(-1/sqrt3)`
Find the principal value of the following:
`tan^-1(2cos (2pi)/3)`
Find the principal value of the following:
`sec^-1(2sin (3pi)/4)`
Find the principal value of the following:
`sec^-1(2tan (3pi)/4)`
For the principal value, evaluate the following:
`sin^-1(-sqrt3/2)-2sec^-1(2tan pi/6)`
Find the principal value of the following:
cosec-1(-2)
Find the principal value of the following:
`\text(cosec)^-1(2/sqrt3)`
For the principal value, evaluate the following:
`sin^-1(-sqrt3/2)+\text{cosec}^-1(-2/sqrt3)`
For the principal value, evaluate the following:
`sin^-1[cos{2\text(cosec)^-1(-2)}]`
Show that `"sin"^-1(5/13) + "cos"^-1(3/5) = "tan"^-1(63/16)`
Find the value of `tan^-1 (tan (9pi)/8)`.
Prove that tan(cot–1x) = cot(tan–1x). State with reason whether the equality is valid for all values of x.
Find value of tan (cos–1x) and hence evaluate `tan(cos^-1 8/17)`
Which of the following corresponds to the principal value branch of tan–1?
The principal value of the expression cos–1[cos (– 680°)] is ______.
The domain of sin–1 2x is ______.
The value of `tan(cos^-1 3/5 + tan^-1 1/4)` is ______.
Which of the following is the principal value branch of cos–1x?
If `cos(sin^-1 2/5 + cos^-1x)` = 0, then x is equal to ______.
If tan–1x + tan–1y = `(4pi)/5`, then cot–1x + cot–1y equals ______.
The value of `cot[cos^-1 (7/25)]` is ______.
If `cos(tan^-1x + cot^-1 sqrt(3))` = 0, then value of x is ______.
The value of cos (sin–1x + cos–1x), |x| ≤ 1 is ______.
The domain of trigonometric functions can be restricted to any one of their branch (not necessarily principal value) in order to obtain their inverse functions.
The principal value of `sin^-1 [cos(sin^-1 1/2)]` is `pi/3`.
`2 "cos"^-1 "x = sin"^-1 (2"x" sqrt(1 - "x"^2))` is true for ____________.
What is the principle value of `sin^-1 (1/sqrt(2))`?