हिंदी

The value of tan2 (sec–12) + cot2 (cosec–13) is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The value of tan2 (sec–12) + cot2 (cosec–13) is ______.

विकल्प

  • 5

  • 11

  • 13

  • 15

MCQ
रिक्त स्थान भरें

उत्तर

The value of tan2 (sec–12) + cot2 (cosec–13) is 11.

Explanation:

tan2 (sec–12) + cot2 (cosec–13) = sec2 (sec–12) – 1 + cosec2 (cosec–13) – 1

= 22 × 1 + 32 – 2

= 11.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Inverse Trigonometric Functions - Solved Examples [पृष्ठ ३५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 2 Inverse Trigonometric Functions
Solved Examples | Q 41 | पृष्ठ ३५

संबंधित प्रश्न

Find the principal value of the following:

`tan^-1(-1/sqrt3)`


Find the principal value of the following:

`tan^-1(2cos  (2pi)/3)`


Find the principal value of the following:

`sec^-1(2sin  (3pi)/4)`


Find the principal value of the following:

`sec^-1(2tan  (3pi)/4)`


For the principal value, evaluate the following:

`sin^-1(-sqrt3/2)-2sec^-1(2tan  pi/6)`


​Find the principal value of the following:

cosec-1(-2)


​Find the principal value of the following:

`\text(cosec)^-1(2/sqrt3)`


For the principal value, evaluate the following:

`sin^-1(-sqrt3/2)+\text{cosec}^-1(-2/sqrt3)`


For the principal value, evaluate the following:

`sin^-1[cos{2\text(cosec)^-1(-2)}]`


Show that `"sin"^-1(5/13) + "cos"^-1(3/5) = "tan"^-1(63/16)`


Find the value of `tan^-1 (tan  (9pi)/8)`.


Prove that tan(cot–1x) = cot(tan–1x). State with reason whether the equality is valid for all values of x.


Find value of tan (cos–1x) and hence evaluate `tan(cos^-1  8/17)`


Which of the following corresponds to the principal value branch of tan–1?


The principal value of the expression cos–1[cos (– 680°)] is ______.


The domain of sin–1 2x is ______.


The value of `tan(cos^-1  3/5 + tan^-1  1/4)` is ______.


Which of the following is the principal value branch of cos–1x?


If `cos(sin^-1  2/5 + cos^-1x)` = 0, then x is equal to ______.


If tan–1x + tan–1y = `(4pi)/5`, then cot–1x + cot–1y equals ______.


The value of `cot[cos^-1 (7/25)]` is ______.


If `cos(tan^-1x + cot^-1 sqrt(3))` = 0, then value of x is ______.


The value of cos (sin–1x + cos–1x), |x| ≤ 1 is ______.


The domain of trigonometric functions can be restricted to any one of their branch (not necessarily principal value) in order to obtain their inverse functions.


The principal value of `sin^-1 [cos(sin^-1  1/2)]` is `pi/3`.


`2  "cos"^-1 "x = sin"^-1 (2"x" sqrt(1 - "x"^2))` is true for ____________.


What is the principle value of `sin^-1 (1/sqrt(2))`?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×