हिंदी

Find value of tan (cos–1x) and hence evaluate tan(cos-1 817) - Mathematics

Advertisements
Advertisements

प्रश्न

Find value of tan (cos–1x) and hence evaluate `tan(cos^-1  8/17)`

योग

उत्तर

Let cos–1x = θ

Then cos θ = x

Where θ ∈ [0, π]

Therefore, tan(cos–1x) = tan θ

= `sqrt(1 - cos^2 theta)/costheta`

= `sqrt(1 - x^2)/x`.

Hence `tan(cos^-1  8/17)`

= `sqrt(1 - (8/17)^2)/(8/17)`

= `15/8`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Inverse Trigonometric Functions - Solved Examples [पृष्ठ २२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 2 Inverse Trigonometric Functions
Solved Examples | Q 10 | पृष्ठ २२

संबंधित प्रश्न

The principal solution of the equation cot x=`-sqrt 3 ` is


Find the principal value of the following:

`sin^-1((sqrt3-1)/(2sqrt2))`


For the principal value, evaluate of the following:

`sin^-1(-1/2)+2cos^-1(-sqrt3/2)`


​Find the principal value of the following:

`cosec^-1(2cos  (2pi)/3)`


For the principal value, evaluate the following:

`sin^-1(-sqrt3/2)+\text{cosec}^-1(-2/sqrt3)`


Find the principal value of cos–1x, for x = `sqrt(3)/2`.


Find the value of `tan^-1 (tan  (9pi)/8)`.


Which of the following corresponds to the principal value branch of tan–1?


One branch of cos–1 other than the principal value branch corresponds to ______.


Let θ = sin–1 (sin (– 600°), then value of θ is ______.


If sin–1x + sin–1y = `pi/2`, then value of cos–1x + cos–1y is ______.


The value of the expression sin [cot–1 (cos (tan–11))] is ______.


Find the value of the expression `sin(2tan^-1  1/3) + cos(tan^-1 2sqrt(2))`


Find the value of `4tan^-1  1/5 - tan^-1  1/239`


Which of the following is the principal value branch of cos–1x?


The value of `sin^-1 [cos((33pi)/5)]` is ______.


The domain of the function cos–1(2x – 1) is ______.


The domain of the function defined by f(x) = `sin^-1 sqrt(x- 1)` is ______.


The value of `cot[cos^-1 (7/25)]` is ______.


The principal value of `cos^-1 (- 1/2)` is ______.


The principal value of `tan^-1 sqrt(3)` is ______.


The value of expression `tan((sin^-1x + cos^-1x)/2)`, when x = `sqrt(3)/2` is ______.


The result `tan^1x - tan^-1y = tan^-1 ((x - y)/(1 + xy))` is true when value of xy is ______.


The period of the function f(x) = cos4x + tan3x is ____________.


`2  "cos"^-1 "x = sin"^-1 (2"x" sqrt(1 - "x"^2))` is true for ____________.


Which of the following is the principal value branch of `"cos"^-1 "x"`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×