हिंदी

The principal value of cos-1(-12) is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The principal value of `cos^-1 (- 1/2)` is ______.

रिक्त स्थान भरें

उत्तर

The principal value of `cos^-1 (- 1/2)` is `(2pi)/3`.

Explanation:

Let `cos^1 (- 1/2)` = x

⇒ cos x = `-1/2`

⇒ cos x = `cos(- pi/3)`

⇒ cos x = `cos(pi - pi/3)`

= `cos  (2pi)/3`

∴ x = `(2pi)/3 ∈ [0, pi]`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Inverse Trigonometric Functions - Exercise [पृष्ठ ४०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 2 Inverse Trigonometric Functions
Exercise | Q 38 | पृष्ठ ४०

संबंधित प्रश्न

Prove that `sin^(-1) (3/5) + cos^(-1) (12/13) = sin^(-1) (56/65)`


Find the principal value of the following:

`sin^-1(cos  (3pi)/4)`


For the principal value, evaluate of the following:

`tan^-1(-1)+cos^-1(-1/sqrt2)`


Find the principal value of the following:

`sec^-1(2)`


For the principal value, evaluate the following:

`sin^-1(-sqrt3/2)-2sec^-1(2tan  pi/6)`


​Find the principal value of the following:

`\text(cosec)^-1(2/sqrt3)`


For the principal value, evaluate the following:

`sin^-1[cos{2\text(cosec)^-1(-2)}]`


Show that `"sin"^-1(5/13) + "cos"^-1(3/5) = "tan"^-1(63/16)`


Show that `"sin"^-1(5/13) + "cos"^-1(3/5) = "tan"^-1(63/16)`


The index number by the method of aggregates for the year 2010, taking 2000 as the base year, was found to be 116. If sum of the prices in the year 2000 is ₹ 300, find the values of x and y in the data given below

Commodity A B C D E F
Price in the year 2000 (₹) 50 x 30 70 116 20
Price in the year 2010 (₹) 60 24 80  120 28

Prove that tan(cot–1x) = cot(tan–1x). State with reason whether the equality is valid for all values of x.


Find value of tan (cos–1x) and hence evaluate `tan(cos^-1  8/17)`


Find the values of x which satisfy the equation sin–1x + sin–1(1 – x) = cos–1x.


The value of `sin^-1 (cos((43pi)/5))` is ______.


One branch of cos–1 other than the principal value branch corresponds to ______.


The value of `tan(cos^-1  3/5 + tan^-1  1/4)` is ______.


The value of the expression sin [cot–1 (cos (tan–11))] is ______.


The value of tan2 (sec–12) + cot2 (cosec–13) is ______.


Find the value of `tan^-1 (- 1/sqrt(3)) + cot^-1(1/sqrt(3)) + tan^-1(sin((-pi)/2))`


The value of `sin^-1 [cos((33pi)/5)]` is ______.


The value of sin (2 tan–1(0.75)) is equal to ______.


The value of the expression `2 sec^-1 2 + sin^-1 (1/2)` is ______.


The value of `cot[cos^-1 (7/25)]` is ______.


The value of the expression (cos–1x)2 is equal to sec2x.


The domain of trigonometric functions can be restricted to any one of their branch (not necessarily principal value) in order to obtain their inverse functions.


The general solution of the equation `"cot"  theta - "tan"  theta = "sec"  theta` is ____________ where `(n in I).`


If sin `("sin"^-1 1/5 + "cos"^-1 "x") = 1,` then the value of x is ____________.


Which of the following is the principal value branch of `"cos"^-1 "x"`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×