Advertisements
Advertisements
Question
The principal value of `cos^-1 (- 1/2)` is ______.
Solution
The principal value of `cos^-1 (- 1/2)` is `(2pi)/3`.
Explanation:
Let `cos^1 (- 1/2)` = x
⇒ cos x = `-1/2`
⇒ cos x = `cos(- pi/3)`
⇒ cos x = `cos(pi - pi/3)`
= `cos (2pi)/3`
∴ x = `(2pi)/3 ∈ [0, pi]`
APPEARS IN
RELATED QUESTIONS
Write the principal value of `tan^(-1)+cos^(-1)(-1/2)`
Prove that `sin^(-1) (3/5) + cos^(-1) (12/13) = sin^(-1) (56/65)`
Find the value of `tan^(-1) sqrt3 - cot^(-1) (-sqrt3)`
Solve `3tan^(-1)x + cot^(-1) x = pi`
if `tan^(-1) a + tan^(-1) b + tan^(-1) x = pi`, prove that a + b + c = abc
Find the principal value of the following:
`sin^-1((sqrt3-1)/(2sqrt2))`
Find the principal value of the following:
`tan^-1(2cos (2pi)/3)`
Find the principal value of the following:
`sec^-1(2)`
For the principal value, evaluate the following:
`sin^-1(-sqrt3/2)+\text{cosec}^-1(-2/sqrt3)`
Find the principal value of the following:
`cot^-1(sqrt3)`
Solve for x, if:
tan (cos-1x) = `2/sqrt5`
Find the value of `cos^-1(cos (13pi)/6)`.
Find the value of `sin(2tan^-1 2/3) + cos(tan^-1 sqrt(3))`
The principal value branch of sec–1 is ______.
The principal value of the expression cos–1[cos (– 680°)] is ______.
The value of sin (2 sin–1 (.6)) is ______.
The value of `tan(cos^-1 3/5 + tan^-1 1/4)` is ______.
Find the value of `tan^-1 (- 1/sqrt(3)) + cot^-1(1/sqrt(3)) + tan^-1(sin((-pi)/2))`
Find the value of `tan^-1 (tan (2pi)/3)`
The value of `sin^-1 [cos((33pi)/5)]` is ______.
The domain of the function defined by f(x) = `sin^-1 sqrt(x- 1)` is ______.
The value of `sin^-1 (sin (3pi)/5)` is ______.
The value of `cos^-1 (cos (14pi)/3)` is ______.
The value of cos (sin–1x + cos–1x), |x| ≤ 1 is ______.
The result `tan^1x - tan^-1y = tan^-1 ((x - y)/(1 + xy))` is true when value of xy is ______.