Advertisements
Advertisements
Question
Find the value of `sin(2tan^-1 2/3) + cos(tan^-1 sqrt(3))`
Solution
Let `tan-1 2/3` = x and `tan^-1 sqrt(3)` = y
So that tan x = `2/3` and tan y = `sqrt(3)`
Therefore, `sin(2tan^-1 2/3) + cos(tan^-1 sqrt(3))`
= sin (2x) + cos y
= `(2tanx)/(1 + tan^2x)+/sqrt(1 +tan^2y)`
= `(2*2/3)/(1 + 4/9) + 1/( + sqrt((sqrt(3))^2`
= `12/13 +1/2`
= `37/26`.
APPEARS IN
RELATED QUESTIONS
Write the principal value of `tan^(-1)+cos^(-1)(-1/2)`
For the principal value, evaluate of the following:
`sin^-1(-sqrt3/2)+cos^-1(sqrt3/2)`
Find the principal value of the following:
`tan^-1(-1/sqrt3)`
Find the principal value of the following:
`tan^-1(cos pi/2)`
Find the principal value of the following:
`sec^-1(2sin (3pi)/4)`
For the principal value, evaluate the following:
`tan^-1sqrt3-sec^-1(-2)`
For the principal value, evaluate the following:
`sin^-1[cos{2\text(cosec)^-1(-2)}]`
The index number by the method of aggregates for the year 2010, taking 2000 as the base year, was found to be 116. If sum of the prices in the year 2000 is ₹ 300, find the values of x and y in the data given below
Commodity | A | B | C | D | E | F |
Price in the year 2000 (₹) | 50 | x | 30 | 70 | 116 | 20 |
Price in the year 2010 (₹) | 60 | 24 | y | 80 | 120 | 28 |
Find the principal value of cos–1x, for x = `sqrt(3)/2`.
Find the value of `cos^-1(cos (13pi)/6)`.
Find the value of `tan^-1 (tan (9pi)/8)`.
Find the value of `sec(tan^-1 y/2)`
Find the value of `sin[2cot^-1 ((-5)/12)]`
One branch of cos–1 other than the principal value branch corresponds to ______.
The principal value of `sin^-1 ((-sqrt(3))/2)` is ______.
The greatest and least values of (sin–1x)2 + (cos–1x)2 are respectively ______.
The value of `tan(cos^-1 3/5 + tan^-1 1/4)` is ______.
The value of tan2 (sec–12) + cot2 (cosec–13) is ______.
Find the value of `tan^-1 (tan (2pi)/3)`
The value of `cot[cos^-1 (7/25)]` is ______.
The value of `sin^-1 (sin (3pi)/5)` is ______.
The principal value of `tan^-1 sqrt(3)` is ______.
The value of `cos^-1 (cos (14pi)/3)` is ______.
The value of the expression (cos–1x)2 is equal to sec2x.
The general solution of the equation `"cot" theta - "tan" theta = "sec" theta` is ____________ where `(n in I).`
`"cos" ["tan"^-1 {"sin" ("cot"^-1 "x")}]` is equal to ____________.
If `"tan"^-1 ("a"/"x") + "tan"^-1 ("b"/"x") = pi/2,` then x is equal to ____________.