Advertisements
Advertisements
Question
Find the principal value of cos–1x, for x = `sqrt(3)/2`.
Solution
If `cos^-1 (sqrt(3)/2)` = θ, then cos θ = `sqrt(3)/2`
Since we are considering principal branch, θ ∈ [0, π].
Also, since `sqrt(3)/2` > 0, θ being in he first quadrant
Hence `cos^-1 (sqrt(3)/2) = pi/6`
APPEARS IN
RELATED QUESTIONS
Prove that `sin^(-1) (3/5) + cos^(-1) (12/13) = sin^(-1) (56/65)`
Find the principal value of the following:
`sin^-1(cos (2pi)/3)`
Find the principal value of the following:
`sin^-1((sqrt3+1)/(2sqrt2))`
Find the principal value of the following:
`sin^-1(cos (3pi)/4)`
Find the principal value of the following:
`tan^-1(cos pi/2)`
For the principal value, evaluate of the following:
`tan^-1{2sin(4cos^-1 sqrt3/2)}`
Find the principal value of the following:
`cot^-1(-sqrt3)`
Show that `"sin"^-1(5/13) + "cos"^-1(3/5) = "tan"^-1(63/16)`
Solve for x, if:
tan (cos-1x) = `2/sqrt5`
Find the value of `cos^-1(cos (13pi)/6)`.
Find the value of `sin(2tan^-1 2/3) + cos(tan^-1 sqrt(3))`
Find the values of x which satisfy the equation sin–1x + sin–1(1 – x) = cos–1x.
The value of `sin^-1 (cos((43pi)/5))` is ______.
One branch of cos–1 other than the principal value branch corresponds to ______.
The value of `tan(cos^-1 3/5 + tan^-1 1/4)` is ______.
Find the value of `tan^-1 (tan (2pi)/3)`
Which of the following is the principal value branch of cosec–1x?
The domain of the function defined by f(x) = `sin^-1 sqrt(x- 1)` is ______.
The value of `cos^-1 (cos (3pi)/2)` is equal to ______.
If `cos(tan^-1x + cot^-1 sqrt(3))` = 0, then value of x is ______.
The value of `cos^-1 (cos (14pi)/3)` is ______.
The least numerical value, either positive or negative of angle θ is called principal value of the inverse trigonometric function.
The principal value of `sin^-1 [cos(sin^-1 1/2)]` is `pi/3`.
The general solution of the equation `"cot" theta - "tan" theta = "sec" theta` is ____________ where `(n in I).`
`"sec" {"tan"^-1 (-"y"/3)}` is equal to ____________.
What is the principle value of `sin^-1 (1/sqrt(2))`?