Advertisements
Advertisements
Question
Which of the following is the principal value branch of cosec–1x?
Options
`((-pi)/2, pi/2)`
`[0, pi] - {pi/2}`
`[(-pi)/2, pi/2]`
`[(-pi)/2, pi/2] - {0}`
Solution
`[(-pi)/2, pi/2] - {0}`
Explanation:
Principal value branch of cosec–1x is
`[(-pi)/2, pi/2] - {0}` as cosec–1(0) = `oo` (not defined).
APPEARS IN
RELATED QUESTIONS
Write the principal value of `tan^(-1)+cos^(-1)(-1/2)`
The principal solution of the equation cot x=`-sqrt 3 ` is
Prove that `sin^(-1) (3/5) + cos^(-1) (12/13) = sin^(-1) (56/65)`
Solve `3tan^(-1)x + cot^(-1) x = pi`
Find the principal value of the following:
`sin^-1((sqrt3+1)/(2sqrt2))`
Find the principal value of the following:
`tan^-1(-1/sqrt3)`
Find the principal value of the following:
`sec^-1(2)`
Find the principal value of the following:
`cosec^-1(-sqrt2)`
For the principal value, evaluate the following:
`cosec^-1(2tan (11pi)/6)`
Find the principal value of the following:
`cot^-1(-sqrt3)`
Find the principal value of the following:
`cot^-1(sqrt3)`
Find the value of `cos^-1(cos (13pi)/6)`.
Find value of tan (cos–1x) and hence evaluate `tan(cos^-1 8/17)`
Which of the following corresponds to the principal value branch of tan–1?
The principal value of `sin^-1 ((-sqrt(3))/2)` is ______.
The greatest and least values of (sin–1x)2 + (cos–1x)2 are respectively ______.
The value of sin (2 sin–1 (.6)) is ______.
The value of `tan(cos^-1 3/5 + tan^-1 1/4)` is ______.
The value of tan2 (sec–12) + cot2 (cosec–13) is ______.
Find the value of `tan^-1 (- 1/sqrt(3)) + cot^-1(1/sqrt(3)) + tan^-1(sin((-pi)/2))`
Find the value of `4tan^-1 1/5 - tan^-1 1/239`
The domain of the function cos–1(2x – 1) is ______.
If `cos(tan^-1x + cot^-1 sqrt(3))` = 0, then value of x is ______.
The result `tan^1x - tan^-1y = tan^-1 ((x - y)/(1 + xy))` is true when value of xy is ______.
The minimum value of n for which `tan^-1 "n"/pi > pi/4`, n ∈ N, is valid is 5.
If `"tan"^-1 ("a"/"x") + "tan"^-1 ("b"/"x") = pi/2,` then x is equal to ____________.
What is the value of `tan^-1(1) cos^-1(- 1/2) + sin^-1(- 1/2)`
Assertion (A): Maximum value of (cos–1 x)2 is π2.
Reason (R): Range of the principal value branch of cos–1 x is `[(-π)/2, π/2]`.