English

Find the value of 4tan-1 15-tan-1 1239 - Mathematics

Advertisements
Advertisements

Question

Find the value of `4tan^-1  1/5 - tan^-1  1/239`

Sum

Solution

`4tan^-1  1/5 - tan^-1  1/239`

= `2(2tan^-1  1/5) - tan^-1  1/239`

= `2tan^-1  (2/5)/(1 - (1/5)^2) - tan^-1  1/239`  .....`(because 2tan^-1x = tan^-1  (2x)/(1 - x^2))`

= `2tan^-1  (2/5)/(24/25) - tan^-1  1/239`

= `2tan^-1  5/12 - tan^-1  1/239`

= `2tan^-1  (2/5)/(1 - (1/5)^2) - tan^-1  1/239` .....`(because 2tan^-1x = tan^-1  (2x)/(1 - x^2))`

= `2tan^-1  (2/5)/(24/25) - tan^-1  1/239`

= `2tan^-1  5/12 - tan^-1  1/239`

= `tan^-1  (2*5/12)/(1 - (5/12)^2) - tan^-1  1/239`  ......`(because 2tan^-1x = tan^-1  (2x)/(1 - x^2))`

= `tan^-1  (144 xx 5)/(119 xx 6) - tan^-1  1/239`

= `tan^-1  120/119 - tan^-1  1/239`

= `tan^-1  (120/119 - 1/239)/(1 + 120/119 * 1/239)`  ......`(because tan^-1x - tan^-1y = tan^-1  (x - y)/(1 + xy))`

= `tan^-1  (120 xx 239 - 119)/(119 xx 239 + 120)`

= `tan^-1  (28680 - 119)/(28441 + 120)`

= `tan^-1  28561/28561`

= `tan^-1 1 = pi/4`

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Inverse Trigonometric Functions - Exercise [Page 36]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 2 Inverse Trigonometric Functions
Exercise | Q 17 | Page 36

RELATED QUESTIONS

The principal solution of the equation cot x=`-sqrt 3 ` is


Find the value of `tan^(-1) sqrt3 - cot^(-1) (-sqrt3)`


Find the principal value of the following:

`sin^-1(-sqrt3/2)`


Find the principal value of the following:

`sin^-1(cos  (2pi)/3)`


Find the principal value of the following:

`sin^-1(cos  (3pi)/4)`


Find the principal value of the following:

`sec^-1(-sqrt2)`


​Find the principal value of the following:

`cosec^-1(2cos  (2pi)/3)`


For the principal value, evaluate the following:

`cosec^-1(2tan  (11pi)/6)`


Find the principal value of the following:

`cot^-1(tan  (3pi)/4)`


The index number by the method of aggregates for the year 2010, taking 2000 as the base year, was found to be 116. If sum of the prices in the year 2000 is ₹ 300, find the values of x and y in the data given below

Commodity A B C D E F
Price in the year 2000 (₹) 50 x 30 70 116 20
Price in the year 2010 (₹) 60 24 80  120 28

Find the principal value of cos–1x, for x = `sqrt(3)/2`.


Find the value of `sec(tan^-1  y/2)`


Find value of tan (cos–1x) and hence evaluate `tan(cos^-1  8/17)`


One branch of cos–1 other than the principal value branch corresponds to ______.


The greatest and least values of (sin–1x)2 + (cos–1x)2 are respectively ______.


The value of the expression sin [cot–1 (cos (tan–11))] is ______.


Find the value of `tan^-1 (tan  (5pi)/6) +cos^-1(cos  (13pi)/6)`


Which of the following is the principal value branch of cosec–1x?


If `cos(sin^-1  2/5 + cos^-1x)` = 0, then x is equal to ______.


The value of sin (2 tan–1(0.75)) is equal to ______.


The value of the expression `2 sec^-1 2 + sin^-1 (1/2)` is ______.


The value of expression `tan((sin^-1x + cos^-1x)/2)`, when x = `sqrt(3)/2` is ______.


The minimum value of n for which `tan^-1  "n"/pi > pi/4`, n ∈ N, is valid is 5.


The general solution of the equation `"cot"  theta - "tan"  theta = "sec"  theta` is ____________ where `(n in I).`


If `"tan"^-1 "x" + "tan"^-1"y + tan"^-1 "z" = pi/2, "x,y,x" > 0,` then the value of xy+yz+zx is ____________.


Evaluate `sin^-1 (sin  (3π)/4) + cos^-1 (cos π) + tan^-1 (1)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×