Advertisements
Advertisements
Question
Find the value of `4tan^-1 1/5 - tan^-1 1/239`
Solution
`4tan^-1 1/5 - tan^-1 1/239`
= `2(2tan^-1 1/5) - tan^-1 1/239`
= `2tan^-1 (2/5)/(1 - (1/5)^2) - tan^-1 1/239` .....`(because 2tan^-1x = tan^-1 (2x)/(1 - x^2))`
= `2tan^-1 (2/5)/(24/25) - tan^-1 1/239`
= `2tan^-1 5/12 - tan^-1 1/239`
= `2tan^-1 (2/5)/(1 - (1/5)^2) - tan^-1 1/239` .....`(because 2tan^-1x = tan^-1 (2x)/(1 - x^2))`
= `2tan^-1 (2/5)/(24/25) - tan^-1 1/239`
= `2tan^-1 5/12 - tan^-1 1/239`
= `tan^-1 (2*5/12)/(1 - (5/12)^2) - tan^-1 1/239` ......`(because 2tan^-1x = tan^-1 (2x)/(1 - x^2))`
= `tan^-1 (144 xx 5)/(119 xx 6) - tan^-1 1/239`
= `tan^-1 120/119 - tan^-1 1/239`
= `tan^-1 (120/119 - 1/239)/(1 + 120/119 * 1/239)` ......`(because tan^-1x - tan^-1y = tan^-1 (x - y)/(1 + xy))`
= `tan^-1 (120 xx 239 - 119)/(119 xx 239 + 120)`
= `tan^-1 (28680 - 119)/(28441 + 120)`
= `tan^-1 28561/28561`
= `tan^-1 1 = pi/4`
APPEARS IN
RELATED QUESTIONS
The principal solution of the equation cot x=`-sqrt 3 ` is
Find the value of `tan^(-1) sqrt3 - cot^(-1) (-sqrt3)`
Find the principal value of the following:
`sin^-1(-sqrt3/2)`
Find the principal value of the following:
`sin^-1(cos (2pi)/3)`
Find the principal value of the following:
`sin^-1(cos (3pi)/4)`
Find the principal value of the following:
`sec^-1(-sqrt2)`
Find the principal value of the following:
`cosec^-1(2cos (2pi)/3)`
For the principal value, evaluate the following:
`cosec^-1(2tan (11pi)/6)`
Find the principal value of the following:
`cot^-1(tan (3pi)/4)`
The index number by the method of aggregates for the year 2010, taking 2000 as the base year, was found to be 116. If sum of the prices in the year 2000 is ₹ 300, find the values of x and y in the data given below
Commodity | A | B | C | D | E | F |
Price in the year 2000 (₹) | 50 | x | 30 | 70 | 116 | 20 |
Price in the year 2010 (₹) | 60 | 24 | y | 80 | 120 | 28 |
Find the principal value of cos–1x, for x = `sqrt(3)/2`.
Find the value of `sec(tan^-1 y/2)`
Find value of tan (cos–1x) and hence evaluate `tan(cos^-1 8/17)`
One branch of cos–1 other than the principal value branch corresponds to ______.
The greatest and least values of (sin–1x)2 + (cos–1x)2 are respectively ______.
The value of the expression sin [cot–1 (cos (tan–11))] is ______.
Find the value of `tan^-1 (tan (5pi)/6) +cos^-1(cos (13pi)/6)`
Which of the following is the principal value branch of cosec–1x?
If `cos(sin^-1 2/5 + cos^-1x)` = 0, then x is equal to ______.
The value of sin (2 tan–1(0.75)) is equal to ______.
The value of the expression `2 sec^-1 2 + sin^-1 (1/2)` is ______.
The value of expression `tan((sin^-1x + cos^-1x)/2)`, when x = `sqrt(3)/2` is ______.
The minimum value of n for which `tan^-1 "n"/pi > pi/4`, n ∈ N, is valid is 5.
The general solution of the equation `"cot" theta - "tan" theta = "sec" theta` is ____________ where `(n in I).`
If `"tan"^-1 "x" + "tan"^-1"y + tan"^-1 "z" = pi/2, "x,y,x" > 0,` then the value of xy+yz+zx is ____________.
Evaluate `sin^-1 (sin (3π)/4) + cos^-1 (cos π) + tan^-1 (1)`.