मराठी

Find the value of 4tan-1 15-tan-1 1239 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the value of `4tan^-1  1/5 - tan^-1  1/239`

बेरीज

उत्तर

`4tan^-1  1/5 - tan^-1  1/239`

= `2(2tan^-1  1/5) - tan^-1  1/239`

= `2tan^-1  (2/5)/(1 - (1/5)^2) - tan^-1  1/239`  .....`(because 2tan^-1x = tan^-1  (2x)/(1 - x^2))`

= `2tan^-1  (2/5)/(24/25) - tan^-1  1/239`

= `2tan^-1  5/12 - tan^-1  1/239`

= `2tan^-1  (2/5)/(1 - (1/5)^2) - tan^-1  1/239` .....`(because 2tan^-1x = tan^-1  (2x)/(1 - x^2))`

= `2tan^-1  (2/5)/(24/25) - tan^-1  1/239`

= `2tan^-1  5/12 - tan^-1  1/239`

= `tan^-1  (2*5/12)/(1 - (5/12)^2) - tan^-1  1/239`  ......`(because 2tan^-1x = tan^-1  (2x)/(1 - x^2))`

= `tan^-1  (144 xx 5)/(119 xx 6) - tan^-1  1/239`

= `tan^-1  120/119 - tan^-1  1/239`

= `tan^-1  (120/119 - 1/239)/(1 + 120/119 * 1/239)`  ......`(because tan^-1x - tan^-1y = tan^-1  (x - y)/(1 + xy))`

= `tan^-1  (120 xx 239 - 119)/(119 xx 239 + 120)`

= `tan^-1  (28680 - 119)/(28441 + 120)`

= `tan^-1  28561/28561`

= `tan^-1 1 = pi/4`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Inverse Trigonometric Functions - Exercise [पृष्ठ ३६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 2 Inverse Trigonometric Functions
Exercise | Q 17 | पृष्ठ ३६

संबंधित प्रश्‍न

The principal solution of `cos^-1(-1/2)` is :


The principal solution of the equation cot x=`-sqrt 3 ` is


Find the principal value of the following:

`sin^-1(cos  (3pi)/4)`


Find the principal value of the following:

`sin^-1(tan  (5pi)/4)`


For the principal value, evaluate of the following:

`sin^-1(-sqrt3/2)+cos^-1(sqrt3/2)`


For the principal value, evaluate of the following:

`tan^-1(-1)+cos^-1(-1/sqrt2)`


Find the principal value of the following:

`sec^-1(-sqrt2)`


For the principal value, evaluate the following:

`sin^-1(-sqrt3/2)-2sec^-1(2tan  pi/6)`


​Find the principal value of the following:

`\text(cosec)^-1(2/sqrt3)`


For the principal value, evaluate the following:

`sec^-1(sqrt2)+2\text{cosec}^-1(-sqrt2)`


Find the principal value of the following:

`cot^-1(-sqrt3)`


Find the principal value of the following:

`cot^-1(sqrt3)`


Find the principal value of the following:

`cot^-1(-1/sqrt3)`


Show that `"sin"^-1(5/13) + "cos"^-1(3/5) = "tan"^-1(63/16)`


Solve for x, if:

tan (cos-1x) = `2/sqrt5`


Find the principal value of cos–1x, for x = `sqrt(3)/2`.


Find the value of `tan^-1 (tan  (9pi)/8)`.


The value of sin (2 sin–1 (.6)) is ______.


Find the value of `tan^-1 (tan  (5pi)/6) +cos^-1(cos  (13pi)/6)`


Find the value of `tan^-1 (- 1/sqrt(3)) + cot^-1(1/sqrt(3)) + tan^-1(sin((-pi)/2))`


Find the value of the expression `sin(2tan^-1  1/3) + cos(tan^-1 2sqrt(2))`


The principal value of `tan^-1 sqrt(3)` is ______.


The value of expression `tan((sin^-1x + cos^-1x)/2)`, when x = `sqrt(3)/2` is ______.


The principal value of `sin^-1 [cos(sin^-1  1/2)]` is `pi/3`.


The period of the function f(x) = cos4x + tan3x is ____________.


If sin `("sin"^-1 1/5 + "cos"^-1 "x") = 1,` then the value of x is ____________.


`"sec" {"tan"^-1 (-"y"/3)}` is equal to ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×