Advertisements
Advertisements
प्रश्न
Find the value of `4tan^-1 1/5 - tan^-1 1/239`
उत्तर
`4tan^-1 1/5 - tan^-1 1/239`
= `2(2tan^-1 1/5) - tan^-1 1/239`
= `2tan^-1 (2/5)/(1 - (1/5)^2) - tan^-1 1/239` .....`(because 2tan^-1x = tan^-1 (2x)/(1 - x^2))`
= `2tan^-1 (2/5)/(24/25) - tan^-1 1/239`
= `2tan^-1 5/12 - tan^-1 1/239`
= `2tan^-1 (2/5)/(1 - (1/5)^2) - tan^-1 1/239` .....`(because 2tan^-1x = tan^-1 (2x)/(1 - x^2))`
= `2tan^-1 (2/5)/(24/25) - tan^-1 1/239`
= `2tan^-1 5/12 - tan^-1 1/239`
= `tan^-1 (2*5/12)/(1 - (5/12)^2) - tan^-1 1/239` ......`(because 2tan^-1x = tan^-1 (2x)/(1 - x^2))`
= `tan^-1 (144 xx 5)/(119 xx 6) - tan^-1 1/239`
= `tan^-1 120/119 - tan^-1 1/239`
= `tan^-1 (120/119 - 1/239)/(1 + 120/119 * 1/239)` ......`(because tan^-1x - tan^-1y = tan^-1 (x - y)/(1 + xy))`
= `tan^-1 (120 xx 239 - 119)/(119 xx 239 + 120)`
= `tan^-1 (28680 - 119)/(28441 + 120)`
= `tan^-1 28561/28561`
= `tan^-1 1 = pi/4`
APPEARS IN
संबंधित प्रश्न
The principal solution of `cos^-1(-1/2)` is :
The principal solution of the equation cot x=`-sqrt 3 ` is
Find the principal value of the following:
`sin^-1(cos (3pi)/4)`
Find the principal value of the following:
`sin^-1(tan (5pi)/4)`
For the principal value, evaluate of the following:
`sin^-1(-sqrt3/2)+cos^-1(sqrt3/2)`
For the principal value, evaluate of the following:
`tan^-1(-1)+cos^-1(-1/sqrt2)`
Find the principal value of the following:
`sec^-1(-sqrt2)`
For the principal value, evaluate the following:
`sin^-1(-sqrt3/2)-2sec^-1(2tan pi/6)`
Find the principal value of the following:
`\text(cosec)^-1(2/sqrt3)`
For the principal value, evaluate the following:
`sec^-1(sqrt2)+2\text{cosec}^-1(-sqrt2)`
Find the principal value of the following:
`cot^-1(-sqrt3)`
Find the principal value of the following:
`cot^-1(sqrt3)`
Find the principal value of the following:
`cot^-1(-1/sqrt3)`
Show that `"sin"^-1(5/13) + "cos"^-1(3/5) = "tan"^-1(63/16)`
Solve for x, if:
tan (cos-1x) = `2/sqrt5`
Find the principal value of cos–1x, for x = `sqrt(3)/2`.
Find the value of `tan^-1 (tan (9pi)/8)`.
The value of sin (2 sin–1 (.6)) is ______.
Find the value of `tan^-1 (tan (5pi)/6) +cos^-1(cos (13pi)/6)`
Find the value of `tan^-1 (- 1/sqrt(3)) + cot^-1(1/sqrt(3)) + tan^-1(sin((-pi)/2))`
Find the value of the expression `sin(2tan^-1 1/3) + cos(tan^-1 2sqrt(2))`
The principal value of `tan^-1 sqrt(3)` is ______.
The value of expression `tan((sin^-1x + cos^-1x)/2)`, when x = `sqrt(3)/2` is ______.
The principal value of `sin^-1 [cos(sin^-1 1/2)]` is `pi/3`.
The period of the function f(x) = cos4x + tan3x is ____________.
If sin `("sin"^-1 1/5 + "cos"^-1 "x") = 1,` then the value of x is ____________.
`"sec" {"tan"^-1 (-"y"/3)}` is equal to ____________.