मराठी

The value of sin (2 sin–1 (.6)) is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The value of sin (2 sin–1 (.6)) is ______.

पर्याय

  • .48

  • .96

  • 1.2

  • sin 1.2

MCQ
रिकाम्या जागा भरा

उत्तर

The value of sin (2 sin–1 (.6)) is .96.

Explanation:

Let sin–1 (.6) = θ

i.e., sin θ = .6

Now sin (2θ) = 2

sinθ cosθ = 2 (.6) (.8)

= .96

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Inverse Trigonometric Functions - Solved Examples [पृष्ठ ३३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 2 Inverse Trigonometric Functions
Solved Examples | Q 35 | पृष्ठ ३३

संबंधित प्रश्‍न

The principal solution of `cos^-1(-1/2)` is :


Write the principal value of `tan^(-1)+cos^(-1)(-1/2)`


For the principal value, evaluate of the following:

`sin^-1(-1/2)+2cos^-1(-sqrt3/2)`


For the principal value, evaluate of the following:

`tan^-1(-1)+cos^-1(-1/sqrt2)`


For the principal value, evaluate of the following:

`tan^-1{2sin(4cos^-1  sqrt3/2)}`


Find the principal value of the following:

`sec^-1(-sqrt2)`


Find the principal value of the following:

`sec^-1(2)`


Find the principal value of the following:

`sec^-1(2sin  (3pi)/4)`


For the principal value, evaluate the following:

`tan^-1sqrt3-sec^-1(-2)`


​Find the principal value of the following:

cosec-1(-2)


​Find the principal value of the following:

`cosec^-1(2cos  (2pi)/3)`


Show that `"sin"^-1(5/13) + "cos"^-1(3/5) = "tan"^-1(63/16)`


Find the value of `cos^-1(cos  (13pi)/6)`.


Find the value of `tan^-1 (tan  (9pi)/8)`.


Prove that tan(cot–1x) = cot(tan–1x). State with reason whether the equality is valid for all values of x.


Find the values of x which satisfy the equation sin–1x + sin–1(1 – x) = cos–1x.


The principal value of the expression cos–1[cos (– 680°)] is ______.


The principal value of `sin^-1 ((-sqrt(3))/2)` is ______.


The value of tan2 (sec–12) + cot2 (cosec–13) is ______.


Find the value of `tan^-1 (- 1/sqrt(3)) + cot^-1(1/sqrt(3)) + tan^-1(sin((-pi)/2))`


The value of `cos^-1 (cos  (3pi)/2)` is equal to ______.


The value of the expression `2 sec^-1 2 + sin^-1 (1/2)` is ______.


The value of `sin^-1 (sin  (3pi)/5)` is ______.


The principal value of `tan^-1 sqrt(3)` is ______.


The result `tan^1x - tan^-1y = tan^-1 ((x - y)/(1 + xy))` is true when value of xy is ______.


The principal value of `sin^-1 [cos(sin^-1  1/2)]` is `pi/3`.


`2  "cos"^-1 "x = sin"^-1 (2"x" sqrt(1 - "x"^2))` is true for ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×