Advertisements
Advertisements
प्रश्न
The value of sin (2 sin–1 (.6)) is ______.
विकल्प
.48
.96
1.2
sin 1.2
उत्तर
The value of sin (2 sin–1 (.6)) is .96.
Explanation:
Let sin–1 (.6) = θ
i.e., sin θ = .6
Now sin (2θ) = 2
sinθ cosθ = 2 (.6) (.8)
= .96
APPEARS IN
संबंधित प्रश्न
The principal solution of the equation cot x=`-sqrt 3 ` is
Find the principal value of the following:
`tan^-1(cos pi/2)`
Find the principal value of the following:
`tan^-1(2cos (2pi)/3)`
For the principal value, evaluate of the following:
`tan^-1{2sin(4cos^-1 sqrt3/2)}`
For the principal value, evaluate the following:
`tan^-1sqrt3-sec^-1(-2)`
Find the principal value of the following:
`\text(cosec)^-1(2/sqrt3)`
For the principal value, evaluate the following:
`sin^-1(-sqrt3/2)+\text{cosec}^-1(-2/sqrt3)`
Find the principal value of the following:
`cot^-1(sqrt3)`
Find the principal value of the following:
`cot^-1(tan (3pi)/4)`
Show that `"sin"^-1(5/13) + "cos"^-1(3/5) = "tan"^-1(63/16)`
if sec-1 x = cosec-1 v. show that `1/x^2 + 1/y^2 = 1`
If `sin^-1"x" + tan^-1"x" = pi/2`, prove that `2"x"^2 + 1 = sqrt5`
Find the principal value of cos–1x, for x = `sqrt(3)/2`.
Find the value of `tan^-1 (tan (9pi)/8)`.
Prove that tan(cot–1x) = cot(tan–1x). State with reason whether the equality is valid for all values of x.
Find the value of `sec(tan^-1 y/2)`
Which of the following corresponds to the principal value branch of tan–1?
Let θ = sin–1 (sin (– 600°), then value of θ is ______.
If sin–1x + sin–1y = `pi/2`, then value of cos–1x + cos–1y is ______.
The value of `tan(cos^-1 3/5 + tan^-1 1/4)` is ______.
Find the value of `4tan^-1 1/5 - tan^-1 1/239`
The domain of the function defined by f(x) = `sin^-1 sqrt(x- 1)` is ______.
If `cos(tan^-1x + cot^-1 sqrt(3))` = 0, then value of x is ______.
The value of `cos^-1 (cos (14pi)/3)` is ______.
The value of expression `tan((sin^-1x + cos^-1x)/2)`, when x = `sqrt(3)/2` is ______.
The result `tan^1x - tan^-1y = tan^-1 ((x - y)/(1 + xy))` is true when value of xy is ______.
`"cos" ["tan"^-1 {"sin" ("cot"^-1 "x")}]` is equal to ____________.
What is the principle value of `sin^-1 (1/sqrt(2))`?
What is the value of `tan^-1(1) cos^-1(- 1/2) + sin^-1(- 1/2)`
Evaluate `sin^-1 (sin (3π)/4) + cos^-1 (cos π) + tan^-1 (1)`.