हिंदी

The value of sin (2 sin–1 (.6)) is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The value of sin (2 sin–1 (.6)) is ______.

विकल्प

  • .48

  • .96

  • 1.2

  • sin 1.2

MCQ
रिक्त स्थान भरें

उत्तर

The value of sin (2 sin–1 (.6)) is .96.

Explanation:

Let sin–1 (.6) = θ

i.e., sin θ = .6

Now sin (2θ) = 2

sinθ cosθ = 2 (.6) (.8)

= .96

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Inverse Trigonometric Functions - Solved Examples [पृष्ठ ३३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 2 Inverse Trigonometric Functions
Solved Examples | Q 35 | पृष्ठ ३३

संबंधित प्रश्न

The principal solution of the equation cot x=`-sqrt 3 ` is


Find the principal value of the following:

`tan^-1(cos  pi/2)`


Find the principal value of the following:

`tan^-1(2cos  (2pi)/3)`


For the principal value, evaluate of the following:

`tan^-1{2sin(4cos^-1  sqrt3/2)}`


For the principal value, evaluate the following:

`tan^-1sqrt3-sec^-1(-2)`


​Find the principal value of the following:

`\text(cosec)^-1(2/sqrt3)`


For the principal value, evaluate the following:

`sin^-1(-sqrt3/2)+\text{cosec}^-1(-2/sqrt3)`


Find the principal value of the following:

`cot^-1(sqrt3)`


Find the principal value of the following:

`cot^-1(tan  (3pi)/4)`


Show that `"sin"^-1(5/13) + "cos"^-1(3/5) = "tan"^-1(63/16)`


if sec-1  x = cosec-1  v. show that `1/x^2 + 1/y^2 = 1`


If `sin^-1"x" + tan^-1"x" = pi/2`, prove that `2"x"^2 + 1 = sqrt5`  


Find the principal value of cos–1x, for x = `sqrt(3)/2`.


Find the value of `tan^-1 (tan  (9pi)/8)`.


Prove that tan(cot–1x) = cot(tan–1x). State with reason whether the equality is valid for all values of x.


Find the value of `sec(tan^-1  y/2)`


Which of the following corresponds to the principal value branch of tan–1?


Let θ = sin–1 (sin (– 600°), then value of θ is ______.


If sin–1x + sin–1y = `pi/2`, then value of cos–1x + cos–1y is ______.


The value of `tan(cos^-1  3/5 + tan^-1  1/4)` is ______.


Find the value of `4tan^-1  1/5 - tan^-1  1/239`


The domain of the function defined by f(x) = `sin^-1 sqrt(x- 1)` is ______.


If `cos(tan^-1x + cot^-1 sqrt(3))` = 0, then value of x is ______.


The value of `cos^-1 (cos  (14pi)/3)` is ______.


The value of expression `tan((sin^-1x + cos^-1x)/2)`, when x = `sqrt(3)/2` is ______.


The result `tan^1x - tan^-1y = tan^-1 ((x - y)/(1 + xy))` is true when value of xy is ______.


`"cos" ["tan"^-1 {"sin" ("cot"^-1  "x")}]` is equal to ____________.


What is the principle value of `sin^-1 (1/sqrt(2))`?


What is the value of `tan^-1(1) cos^-1(- 1/2) + sin^-1(- 1/2)`


Evaluate `sin^-1 (sin  (3π)/4) + cos^-1 (cos π) + tan^-1 (1)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×