Advertisements
Advertisements
प्रश्न
If `sin^-1"x" + tan^-1"x" = pi/2`, prove that `2"x"^2 + 1 = sqrt5`
उत्तर
`sin ^-1"x"+tan^-1"x"=pi/2`
⇒ `tan^-1("x"/ sqrt (1-"x"^2)) + tan^-1"x" =pi/2`
⇒ `tan^-1[("x"/ sqrt (1-"x"^2)+ "x")/(1 -"x"/(sqrt(1-"x"^2)). "x")] = pi/2`
⇒ `tan^-1(("x"+"x"sqrt(1-"x"^2))/(sqrt(1-"x"^2)-"x"^2)) = pi/2`
⇒ `("x"+"x"sqrt(1-"x"^2))/(sqrt(1-"x"^2)-"x"^2 )= tan(pi/2)`
⇒ `(sqrt(1-"x"^2)-"x"^2)/("x"+"x"sqrt(1-"x"^2)) = cot (pi/2)=0`
⇒ `sqrt(1-"x"^2) - "x"^2 = 0`
⇒ `"x"^2= sqrt(1-"x"^2)`
⇒ `"x"^4 = 1-"x"^2`
⇒ `"x"^4 +"x"^2 - 1 = 0`
⇒ let `"x"^2 ="t"`
⇒ t2 + t - 1 = 0
t = `(-1±sqrt(1+4))/2`
t = `(-1±sqrt(5))/2 =⇒ 2"t" = -1± sqrt5`
⇒ ` 2"x"^2+1 = ± sqrt5` ignoring negative value
We get : `2"x"^2+1 = sqrt5` = proved
APPEARS IN
संबंधित प्रश्न
Write the principal value of `tan^(-1)+cos^(-1)(-1/2)`
Prove that `sin^(-1) (3/5) + cos^(-1) (12/13) = sin^(-1) (56/65)`
if `tan^(-1) a + tan^(-1) b + tan^(-1) x = pi`, prove that a + b + c = abc
Find the principal value of the following:
`sin^-1(-sqrt3/2)`
Find the principal value of the following:
`tan^-1(1/sqrt3)`
Find the principal value of the following:
`tan^-1(-1/sqrt3)`
For the principal value, evaluate of the following:
`tan^-1(-1)+cos^-1(-1/sqrt2)`
For the principal value, evaluate the following:
`sin^-1(-sqrt3/2)-2sec^-1(2tan pi/6)`
Find the principal value of the following:
cosec-1(-2)
Find the principal value of the following:
`cosec^-1(2cos (2pi)/3)`
For the principal value, evaluate the following:
`sin^-1(-sqrt3/2)+\text{cosec}^-1(-2/sqrt3)`
For the principal value, evaluate the following:
`cosec^-1(2tan (11pi)/6)`
Find the value of `cos^-1(cos (13pi)/6)`.
The value of `sin^-1 (cos((43pi)/5))` is ______.
The principal value of the expression cos–1[cos (– 680°)] is ______.
The greatest and least values of (sin–1x)2 + (cos–1x)2 are respectively ______.
If sin–1x + sin–1y = `pi/2`, then value of cos–1x + cos–1y is ______.
Find the value of `tan^-1 (- 1/sqrt(3)) + cot^-1(1/sqrt(3)) + tan^-1(sin((-pi)/2))`
Find the value of the expression `sin(2tan^-1 1/3) + cos(tan^-1 2sqrt(2))`
The value of `sin^-1 [cos((33pi)/5)]` is ______.
If `cos(tan^-1x + cot^-1 sqrt(3))` = 0, then value of x is ______.
The value of `cos^-1 (cos (14pi)/3)` is ______.
The value of cos (sin–1x + cos–1x), |x| ≤ 1 is ______.
If sin `("sin"^-1 1/5 + "cos"^-1 "x") = 1,` then the value of x is ____________.
`"cos" ["tan"^-1 {"sin" ("cot"^-1 "x")}]` is equal to ____________.
`"sec" {"tan"^-1 (-"y"/3)}` is equal to ____________.
If `"tan"^-1 "x" + "tan"^-1"y + tan"^-1 "z" = pi/2, "x,y,x" > 0,` then the value of xy+yz+zx is ____________.
Evaluate `sin^-1 (sin (3π)/4) + cos^-1 (cos π) + tan^-1 (1)`.