मराठी

If Sin^-1"X" + Tan^-1"X" = Pi/2, Prove that 2"X"^2 + 1 = Sqrt5 - Mathematics

Advertisements
Advertisements

प्रश्न

If `sin^-1"x" + tan^-1"x" = pi/2`, prove that `2"x"^2 + 1 = sqrt5`  

बेरीज

उत्तर

`sin ^-1"x"+tan^-1"x"=pi/2`

⇒   `tan^-1("x"/ sqrt (1-"x"^2))  + tan^-1"x" =pi/2`

 

⇒   `tan^-1[("x"/ sqrt (1-"x"^2)+ "x")/(1 -"x"/(sqrt(1-"x"^2)). "x")] = pi/2`

 

⇒   `tan^-1(("x"+"x"sqrt(1-"x"^2))/(sqrt(1-"x"^2)-"x"^2)) = pi/2`

 

⇒   `("x"+"x"sqrt(1-"x"^2))/(sqrt(1-"x"^2)-"x"^2 )= tan(pi/2)`

 

⇒   `(sqrt(1-"x"^2)-"x"^2)/("x"+"x"sqrt(1-"x"^2)) = cot (pi/2)=0`

 

⇒ `sqrt(1-"x"^2) - "x"^2 = 0`

⇒   `"x"^2= sqrt(1-"x"^2)`

⇒   `"x"^4 = 1-"x"^2`

⇒  `"x"^4 +"x"^2 - 1 = 0`

⇒ let `"x"^2 ="t"`

⇒ t2 + t - 1 = 0

t = `(-1±sqrt(1+4))/2`

t = `(-1±sqrt(5))/2 =⇒ 2"t" = -1± sqrt5`

⇒  ` 2"x"^2+1 = ± sqrt5`   ignoring negative value

We get : `2"x"^2+1 = sqrt5`  = proved

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2015-2016 (March)

APPEARS IN

संबंधित प्रश्‍न

Write the principal value of `tan^(-1)+cos^(-1)(-1/2)`


Prove that `sin^(-1) (3/5) + cos^(-1) (12/13) = sin^(-1) (56/65)`


Find the principal value of the following:

`tan^-1(1/sqrt3)`


Find the principal value of the following:

`sec^-1(2)`


​Find the principal value of the following:

cosec-1(-2)


For the principal value, evaluate the following:

`sin^-1(-sqrt3/2)+\text{cosec}^-1(-2/sqrt3)`


For the principal value, evaluate the following:

`sin^-1[cos{2\text(cosec)^-1(-2)}]`


Show that `"sin"^-1(5/13) + "cos"^-1(3/5) = "tan"^-1(63/16)`


The index number by the method of aggregates for the year 2010, taking 2000 as the base year, was found to be 116. If sum of the prices in the year 2000 is ₹ 300, find the values of x and y in the data given below

Commodity A B C D E F
Price in the year 2000 (₹) 50 x 30 70 116 20
Price in the year 2010 (₹) 60 24 80  120 28

Prove that tan(cot–1x) = cot(tan–1x). State with reason whether the equality is valid for all values of x.


Find the value of `sin(2tan^-1  2/3) + cos(tan^-1 sqrt(3))`


The principal value of the expression cos–1[cos (– 680°)] is ______.


The value of cot (sin–1x) is ______.


Let θ = sin–1 (sin (– 600°), then value of θ is ______.


The value of `tan(cos^-1  3/5 + tan^-1  1/4)` is ______.


Find the value of `tan^-1 (tan  (2pi)/3)`


Which of the following is the principal value branch of cosec–1x?


The value of sin (2 tan–1(0.75)) is equal to ______.


The principal value of `cos^-1 (- 1/2)` is ______.


The set of values of `sec^-1 (1/2)` is ______.


The principal value of `tan^-1 sqrt(3)` is ______.


The result `tan^1x - tan^-1y = tan^-1 ((x - y)/(1 + xy))` is true when value of xy is ______.


The domain of trigonometric functions can be restricted to any one of their branch (not necessarily principal value) in order to obtain their inverse functions.


If `5 sin theta = 3  "then", (sec theta + tan theta)/(sec theta - tan theta)` is equal to ____________.


The period of the function f(x) = cos4x + tan3x is ____________.


Assertion (A): Maximum value of (cos–1 x)2 is π2.

Reason (R): Range of the principal value branch of cos–1 x is `[(-π)/2, π/2]`.


Evaluate `sin^-1 (sin  (3π)/4) + cos^-1 (cos π) + tan^-1 (1)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×