मराठी

For the Principal Value, Evaluate the Following: `Sin^-1(-sqrt3/2)+Cosec^-1(-2/Sqrt3)` - Mathematics

Advertisements
Advertisements

प्रश्न

For the principal value, evaluate the following:

`sin^-1(-sqrt3/2)+\text{cosec}^-1(-2/sqrt3)`

थोडक्यात उत्तर

उत्तर

`sin^-1(-sqrt3/2)+cosec^-1(-2/sqrt3)=-sin^-1(sqrt3/2)+cosec^-1(-2/sqrt3)`

`=-sin^-1(sin  pi/3)+cosec^-1[cosec(-pi/3)]`

`=-pi/3-pi/3`

`=-(2pi)/3`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.05 [पृष्ठ २१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 4 Inverse Trigonometric Functions
Exercise 4.05 | Q 3.1 | पृष्ठ २१

संबंधित प्रश्‍न

Prove that `sin^(-1) (3/5) + cos^(-1) (12/13) = sin^(-1) (56/65)`


Find the principal value of the following:

`sin^-1(-sqrt3/2)`


For the principal value, evaluate of the following:

`cos^-1  1/2+2sin^-1  (1/2)`


Find the principal value of the following:

`tan^-1(1/sqrt3)`


Find the principal value of the following:

`tan^-1(cos  pi/2)`


​Find the principal value of the following:

`\text(cosec)^-1(2/sqrt3)`


Find the principal value of the following:

`cot^-1(tan  (3pi)/4)`


The index number by the method of aggregates for the year 2010, taking 2000 as the base year, was found to be 116. If sum of the prices in the year 2000 is ₹ 300, find the values of x and y in the data given below

Commodity A B C D E F
Price in the year 2000 (₹) 50 x 30 70 116 20
Price in the year 2010 (₹) 60 24 80  120 28

Find the value of `tan^-1 (tan  (9pi)/8)`.


Find value of tan (cos–1x) and hence evaluate `tan(cos^-1  8/17)`


Find the value of `sin[2cot^-1 ((-5)/12)]`


Find the value of `sin(2tan^-1  2/3) + cos(tan^-1 sqrt(3))`


The principal value branch of sec–1 is ______.


The domain of sin–1 2x is ______.


The principal value of `sin^-1 ((-sqrt(3))/2)` is ______.


The value of sin (2 sin–1 (.6)) is ______.


The value of `tan(cos^-1  3/5 + tan^-1  1/4)` is ______.


The value of tan2 (sec–12) + cot2 (cosec–13) is ______.


Find the value of `tan^-1 (- 1/sqrt(3)) + cot^-1(1/sqrt(3)) + tan^-1(sin((-pi)/2))`


Find the value of `tan^-1 (tan  (2pi)/3)`


Find the value of the expression `sin(2tan^-1  1/3) + cos(tan^-1 2sqrt(2))`


The value of `sin^-1 [cos((33pi)/5)]` is ______.


If `cos(sin^-1  2/5 + cos^-1x)` = 0, then x is equal to ______.


The value of `cos^-1 (cos  (3pi)/2)` is equal to ______.


If tan–1x + tan–1y = `(4pi)/5`, then cot–1x + cot–1y equals ______.


The principal value of `cos^-1 (- 1/2)` is ______.


The value of `sin^-1 (sin  (3pi)/5)` is ______.


The value of `cos^-1 (cos  (14pi)/3)` is ______.


The value of cos (sin–1x + cos–1x), |x| ≤ 1 is ______.


`2  "cos"^-1 "x = sin"^-1 (2"x" sqrt(1 - "x"^2))` is true for ____________.


If sin `("sin"^-1 1/5 + "cos"^-1 "x") = 1,` then the value of x is ____________.


If `"tan"^-1 ("a"/"x") + "tan"^-1 ("b"/"x") = pi/2,` then x is equal to ____________.


What is the value of x so that the seven-digit number 8439 × 53 is divisible by 99?


What is the principle value of `sin^-1 (1/sqrt(2))`?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×