Advertisements
Advertisements
प्रश्न
Find the set of values of `cosec^-1(sqrt3/2)`
उत्तर
The value of `cosec^-1(sqrt3/2)` is undefined as it is outside the range i.e., R – (–1, 1) .
APPEARS IN
संबंधित प्रश्न
Find the value of the following:
If sin−1 x = y, then
Prove that:
`tan^-1 ((sqrt(1 + x) - sqrt(1 - x))/(sqrt(1 + x) + sqrt(1 - x))) = pi/4 - 1/2 cos^-1 x`, for `- 1/sqrt2 <= x <= 1`
[Hint: put x = cos 2θ]
Find the domain of the following function:
`f(x)=sin^-1x^2`
Evaluate the following:
`tan^-1(tan (5pi)/6)+cos^-1{cos((13pi)/6)}`
Find the domain of `f(x)=cotx+cot^-1x`
Solve for x:
`tan^-1 [(x-1),(x-2)] + tan^-1 [(x+1),(x+2)] = x/4`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of sin `(A/2)`.
Find the principal value of the following: sin-1 `(1/sqrt(2))`
Prove the following:
`sin^-1(-1/2) + cos^-1(-sqrt(3)/2) = cos^-1(-1/2)`
Prove that cot−1(7) + 2 cot−1(3) = `pi/4`
Evaluate: `cos (sin^-1 (4/5) + sin^-1 (12/13))`
Show that `sin^-1 (- 3/5) - sin^-1 (- 8/17) = cos^-1 (84/85)`
Find the principal value of cosec–1(– 1)
Find the principal value of `sec^-1 (- sqrt(2))`
Choose the correct alternative:
cos 2θ cos 2ϕ+ sin2 (θ – ϕ) – sin2 (θ + ϕ) is equal to
If sin `(sin^-1 1/3 + cos^-1 x) = 1`, then the value of x is ______.
In a triangle ABC, ∠C = 90°, then the value of `tan^-1 ("a"/("b + c")) + tan^-1("b"/("c + a"))` is ______.
If `3tan^-1x +cot^-1x = pi`, then xis equal to ______.
The value of `sin^-1[cos(pi/3)] + sin^-1[tan((5pi)/4)]` is ______.
The domain of the function defined by f(x) = sin–1x + cosx is ______.
Show that `2tan^-1 (-3) = (-pi)/2 + tan^-1 ((-4)/3)`
`"cos" 2 theta` is not equal to ____________.
If `"x + y" = "x"/4` then (1+ tanx)(1 + tany) is equal to ____________.
`"sin"^-1 (-1/2)`
`"sin"^-1 (1 - "x") - 2 "sin"^-1 "x" = pi/2`
The range of sin-1 x + cos-1 x + tan-1 x is ____________.
`"cos"^-1 ("cos" ((7pi)/6))` is equal to ____________.
If a = `(2sin theta)/(1 + costheta + sintheta)`, then `(1 + sintheta - costheta)/(1 + sintheta)` is
If |Z1| = |Z2| and arg (Z1) + arg (Z2) = 0, then
If `(-1)/sqrt(2) ≤ x ≤ 1/sqrt(2)` then `sin^-1 (2xsqrt(1 - x^2))` is equal to
What will be the principal value of `sin^-1(-1/2)`?
Find the principal value of `cot^-1 ((-1)/sqrt(3))`
If θ = `sin^-1((2x)/(1 + x^2)) + cos^-1((1 - x^2)/(1 + x^2))`, for `x ≥ 3/2` then the absolute value of `((cosθ + tanθ + 4)/secθ)` is ______.
If sin–1a + sin–1b + sin–1c = π, then find the value of `asqrt(1 - a^2) + bsqrt(1 - b^2) + csqrt(1 - c^2)`.
sin [cot–1 (cos (tan–1 x))] = ______.
If sin–1x – cos–1x = `π/6`, then x = ______.
The value of `tan(cos^-1 4/5 + tan^-1 2/3)` is ______.