Advertisements
Advertisements
प्रश्न
Show that `2tan^-1 (-3) = (-pi)/2 + tan^-1 ((-4)/3)`
उत्तर
L.H.S. `2tan^-1 (-3) = -2tan^-1 (3)`
= `- cos^-1 [(1- (3)^2)/(1 + (3)^2)]` ......`[because 2tan^-1x = cos^-1 ((1 - x^2)/(1 + x^2))]`
= `-cos^-1 ((1 - 9)/(1 + 9))`
= `- cos^-1 ((-8)/10)`
= `- cos^-1 ((-4)/5)`
= `- [pi - cos^-1 (4/5)]`
= `- pi + cos^-1 4/5`
= `- pi + tan^-1 (3/4)` ......`[because cos^-1 4/5 = tan^-1 3/4]`
= `- pi + pi/2 - cot^-1 (3/4)` ......`[tan^-1x = pi/2 - cot^-1x]`
= `(-pi)/2 - cot^-1 (3/4)`
= `(-pi)/2 - tan^-1 (4/3)` .......`[because tan^-1x = cot^-1 1/x]`
= `(-pi)/2 + tan^-1 (- 4/3)` R.H.S
Hence proved.
APPEARS IN
संबंधित प्रश्न
Find the principal value of `cosec^(-1)(-sqrt2)`
Find the value of the following:
`tan^(-1)(1) + cos^(-1) (-1/2) + sin^(-1) (-1/2)`
Find the value of the following:
`cos^(-1) (cos (13pi)/6)`
Find the domain of the following function:
`f(x)sin^-1sqrt(x^2-1)`
Evaluate: tan `[ 2 tan^-1 (1)/(2) – cot^-1 3]`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of cos `A/2`
Find the principal solutions of the following equation:
tan 5θ = -1
Find the value of `cos^-1 (1/2) + tan^-1 (1/sqrt(3))`
Prove that sin `[tan^-1 ((1 - x^2)/(2x)) + cos^-1 ((1 - x^2)/(1 + x^2))]` = 1
Find the principal value of the following:
`sec^-1 (-sqrt2)`
Express `tan^-1 ((cos x - sin x)/(cos x + sin x))`, 0 < x < π in the simplest form.
Find the principal value of `tan^-1 (sqrt(3))`
Choose the correct alternative:
cos 2θ cos 2ϕ+ sin2 (θ – ϕ) – sin2 (θ + ϕ) is equal to
`sin^-1x + sin^-1 1/x + cos^-1x + cos^-1 1/x` = ______
If `sin^-1 3/5 + cos^-1 12/13 = sin^-1 P`, then P is equal to ______
`cos(2sin^-1 3/4+cos^-1 3/4)=` ______.
If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then θ = ______
If `tan^-1x + tan^-1y = (4pi)/5`, then `cot^-1x + cot^-1y` equals ______.
If `3tan^-1x +cot^-1x = pi`, then xis equal to ______.
The domain of the function y = sin–1 (– x2) is ______.
Show that `cos(2tan^-1 1/7) = sin(4tan^-1 1/3)`
Prove that `tan^-1 1/4 + tan^-1 2/9 = sin^-1 1/sqrt(5)`
If `"sin"^-1("x"^2 - 7"x" + 12) = "n"pi, AA "n" in "I"`, then x = ____________.
`"tan"^-1 (sqrt3)`
`"sin"^-1 (1 - "x") - 2 "sin"^-1 "x" = pi/2`
What is the value of `sin^-1(sin (3pi)/4)`?
`sin(tan^-1x), |x| < 1` is equal to
what is the value of `cos^-1 (cos (13pi)/6)`
cos–1(cos10) is equal to ______.
`cot^-1(sqrt(cos α)) - tan^-1 (sqrt(cos α))` = x, then sin x = ______.