Advertisements
Advertisements
प्रश्न
The domain of the function y = sin–1 (– x2) is ______.
पर्याय
[0, 1]
(0, 1)
[–1, 1]
φ
उत्तर
The domain of the function y = sin–1 (– x2) is [–1, 1].
Explanation:
y = sin–1(– x2)
⇒ siny = – x2
i.e. – 1 ≤ – x2 ≤ 1 ......(Since – 1 ≤ sin y ≤ 1)
⇒ 1 ≥ x2 ≥ – 1
⇒ 0 ≤ x2 ≤ 1
⇒ |x| ≤ 1
i.e. – 1 ≤ x ≤ 1
APPEARS IN
संबंधित प्रश्न
Find the principal values of `sin^(-1) (-1/2)`
Find the principal value of cosec−1 (2)
Find the principal value of `cot^(-1) (sqrt3)`
`tan^(-1) sqrt3 - sec^(-1)(-2)` is equal to ______.
Find the value of the following:
`tan^(-1) (tan (7x)/6)`
`sin^-1 1/2-2sin^-1 1/sqrt2`
Evaluate the following:
`tan^-1(-1/sqrt3)+cot^-1(1/sqrt3)+tan^-1(sin(-pi/2))`
Prove that:
cot−1 7 + cot−1 8 + cot−1 18 = cot−1 3 .
Evaluate the following:
`cos^-1(1/2) + 2sin^-1(1/2)`
Evaluate the following:
`tan^-1 sqrt(3) - sec^-1 (-2)`
Prove the following:
`cos^-1(3/5) + cos^-1(4/5) = pi/(2)`
Prove the following:
`tan^-1(1/2) + tan^-1(1/3) = pi/(4)`
Prove the following:
`2tan^-1(1/3) = tan^-1(3/4)`
Prove the following:
`tan^-1[sqrt((1 - cosθ)/(1 + cosθ))] = θ/(2)`, if θ ∈ (– π, π).
Find the principal solutions of the following equation:
cot 2θ = 0.
If tan−1x + tan−1y + tan−1z = π, then show that `1/(xy) + 1/(yz) + 1/(zx)` = 1
Find the principal value of the following:
tan-1 (-1)
Show that `sin^-1 (- 3/5) - sin^-1 (- 8/17) = cos^-1 (84/85)`
Find the principal value of `sec^-1 (- sqrt(2))`
The principle solutions of equation tan θ = -1 are ______
sin[3 sin-1 (0.4)] = ______.
All trigonometric functions have inverse over their respective domains.
`"sin" 265° - "cos" 265°` is ____________.
`"cos"^-1 1/2 + 2 "sin"^-1 1/2` is equal to ____________.
`2"tan"^-1 ("cos x") = "tan"^-1 (2 "cosec x")`
If `sqrt(2)` sec θ + tan θ = 1, then the general value of θ is
If θ = `sin^-1((2x)/(1 + x^2)) + cos^-1((1 - x^2)/(1 + x^2))`, for `x ≥ 3/2` then the absolute value of `((cosθ + tanθ + 4)/secθ)` is ______.
Let x = sin–1(sin8) + cos–1(cos11) + tan–1(tan7), and x = k(π – 2.4) for an integer k, then the value of k is ______.
If x ∈ R – {0}, then `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2)))`