Advertisements
Advertisements
प्रश्न
Prove the following:
`tan^-1(1/2) + tan^-1(1/3) = pi/(4)`
उत्तर
L.H.S. = `tan^-1(1/2) + tan^-1(1/3)`
= `tan^-1 [(1/2 + 1/3)/(1 - 1/2 * 1/3)]` ...since `1/2 > 0, 1/3 > 0` and `(1/2)(1/3) < 1`
= `tan ^-1 ((5/6)/(1 - 1/6))`
= `tan^-1((5/6)/(5/6))`
= tan-1(1)
= `tan^-1(tan pi/4)`
= `pi/(4)`
= R.H.S.
संबंधित प्रश्न
If `sin^-1(1-x) -2sin^-1x = pi/2` then x is
- -1/2
- 1
- 0
- 1/2
If `tan^-1((x-1)/(x-2))+cot^-1((x+2)/(x+1))=pi/4; `
Find the principal value of `cos^(-1) (sqrt3/2)`
Find the principal value of cosec−1 (2)
Find the principal value of `cot^(-1) (sqrt3)`
Find the principal value of `cosec^(-1)(-sqrt2)`
Find the value of the following:
`tan^(-1)(1) + cos^(-1) (-1/2) + sin^(-1) (-1/2)`
Find the value of the following:
`tan^(-1) (tan (7x)/6)`
`sin^-1 1/2-2sin^-1 1/sqrt2`
Find the domain of the following function:
`f(x) = sin^-1x + sinx`
Find the domain of the following function:
`f(x)sin^-1sqrt(x^2-1)`
Evaluate the following:
`tan^-1 1+cos^-1 (-1/2)+sin^-1(-1/2)`
Find the domain of `f(x)=cotx+cot^-1x`
Evaluate the following:
`tan^-1(-1/sqrt3)+cot^-1(1/sqrt3)+tan^-1(sin(-pi/2))`
Prove that:
cot−1 7 + cot−1 8 + cot−1 18 = cot−1 3 .
Evaluate: tan `[ 2 tan^-1 (1)/(2) – cot^-1 3]`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of sin `(A/2)`.
In ΔABC, if a = 18, b = 24, c = 30 then find the values of cos `A/2`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of tan `A/2`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of A(ΔABC)
In ΔABC prove that `sin "A"/(2). sin "B"/(2). sin "C"/(2) = ["A(ΔABC)"]^2/"abcs"`
Find the principal value of the following: `sin^-1 (1/2)`
Find the principal value of the following: cosec- 1(2)
Find the principal value of the following: tan- 1( - √3)
Find the principal value of the following: sin-1 `(1/sqrt(2))`
Find the principal value of the following: cos- 1`(-1/2)`
Prove the following:
`sin^-1(1/sqrt(2)) -3sin^-1(sqrt(3)/2) = -(3π)/(4)`
Prove the following:
`sin^-1(-1/2) + cos^-1(-sqrt(3)/2) = cos^-1(-1/2)`
Prove the following:
`tan^-1[sqrt((1 - cosθ)/(1 + cosθ))] = θ/(2)`, if θ ∈ (– π, π).
In ΔABC, prove the following:
`(cos A)/a + (cos B)/b + (cos C)/c = (a^2 + b^2 + c^2)/(2abc)`
Find the principal solutions of the following equation:
cot 2θ = 0.
sin−1x − cos−1x = `pi/6`, then x = ______
`tan^-1(tan (7pi)/6)` = ______
If tan−1x + tan−1y + tan−1z = π, then show that `1/(xy) + 1/(yz) + 1/(zx)` = 1
Prove that cot−1(7) + 2 cot−1(3) = `pi/4`
Prove that `2 tan^-1 (1/8) + tan^-1 (1/7) + 2tan^-1 (1/5) = pi/4`
Find the principal value of the following:
cosec-1 (2)
Show that `tan^-1 (1/2) + tan^-1 (2/11) = tan^-1 (3/4)`
Solve `tan^-1 2x + tan^-1 3x = pi/4`
Evaluate:
`cos[tan^-1 (3/4)]`
Evaluate: sin`[1/2 cos^-1 (4/5)]`
Evaluate: `cos (sin^-1 (4/5) + sin^-1 (12/13))`
Show that `sin^-1 (- 3/5) - sin^-1 (- 8/17) = cos^-1 (84/85)`
Find the principal value of cosec–1(– 1)
In Δ ABC, with the usual notations, if sin B sin C = `"bc"/"a"^2`, then the triangle is ______.
If `sin^-1 3/5 + cos^-1 12/13 = sin^-1 P`, then P is equal to ______
The principal value of `tan^{-1(sqrt3)}` is ______
If sin `(sin^-1 1/3 + cos^-1 x) = 1`, then the value of x is ______.
`tan[2tan^-1 (1/3) - pi/4]` = ______.
The value of cot (- 1110°) is equal to ______.
If `3sin^-1((2x)/(1 + x^2)) - 4cos^-1((1 - x^2)/(1 + x^2)) + 2tan^-1((2x)/(1 - x^2)) = pi/3`, then x is equal to ______
`cos^-1 4/5 + tan^-1 3/5` = ______.
The value of `sin^-1[cos(pi/3)] + sin^-1[tan((5pi)/4)]` is ______.
The domain of the function y = sin–1 (– x2) is ______.
The equation tan–1x – cot–1x = `(1/sqrt(3))` has ______.
If 2 tan–1(cos θ) = tan–1(2 cosec θ), then show that θ = π 4, where n is any integer.
Show that `sin^-1 5/13 + cos^-1 3/5 = tan^-1 63/16`
All trigonometric functions have inverse over their respective domains.
`"sin" 265° - "cos" 265°` is ____________.
If sin-1 x – cos-1 x `= pi/6,` then x = ____________.
`"sin"^-1 (-1/2)`
`"tan"^-1 (sqrt3)`
`"sin"^-1 (1 - "x") - 2 "sin"^-1 "x" = pi/2`
`2 "tan"^-1 ("cos x") = "tan"^-1 (2 "cosec x")`
`"sin" ["cot"^-1 {"cos" ("tan"^-1 "x")}] =` ____________.
The value of `"cos"^-1 ("cos" ((33 pi)/5))` is ____________.
`"tan"(pi/4 + 1/2 "cos"^-1 "x") + "tan" (pi/4 - 1/2 "cos"^-1 "x") =` ____________.
If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt "cos" alpha) = "x",` then sinx is equal to ____________.
`"tan"^-1 sqrt3 - "sec"^-1 (-2)` is equal to ____________.
The number of solutions of sin–1x + sin–1(1 – x) = cos–1x is
Domain and Rariges of cos–1 is:-
What will be the principal value of `sin^-1(-1/2)`?
What is the principal value of cosec–1(2).
Find the value, if sin–1x = y, then `->`:-
`2tan^-1 (cos x) = tan^-1 (2"cosec" x)`, then 'x' will be equal to
what is the value of `cos^-1 (cos (13pi)/6)`
If f(x) = x5 + 2x – 3, then (f–1)1 (–3) = ______.
Number of values of x satisfying the system of equations `sin^-1sqrt(2 + e^(-2x) - 2e^-x) + sec^-1sqrt(1 - x^2 + x^4) = π/2` and `5^(1+tan^-1x)` = 4 + [cos–1x] is ______ (where [.] denotes greatest integer function)
If sin–1a + sin–1b + sin–1c = π, then find the value of `asqrt(1 - a^2) + bsqrt(1 - b^2) + csqrt(1 - c^2)`.
The value of `cos^-1(cos(π/2)) + cos^-1(sin((2π)/2))` is ______.
sin [cot–1 (cos (tan–1 x))] = ______.
If y = `tan^-1 (sqrt(1 + x^2) - sqrt(1 - x^2))/(sqrt(1 + x^2) + sqrt(1 - x^2))`, then `dy/dx` is equal to ______.
If tan 4θ = `tan(2/θ)`, then the general value of θ is ______.