Advertisements
Advertisements
प्रश्न
In ΔABC prove that `sin "A"/(2). sin "B"/(2). sin "C"/(2) = ["A(ΔABC)"]^2/"abcs"`
उत्तर
L.H.S.
= `sin "A"/(2). sin "B"/(2). sin "C"/(2)`
`= sqrt(((s - b)(s - c))/"bc") .sqrt(((s - a)(s - c))/"ac") . sqrt(((s -a )(s - b))/"ab"`
`= sqrt(((s - a)^2(s - b)^2(s - c)^2)/(a^2b^2c^2)`
`= ((s - a)(s - b)(s - c))/"abc"`
`= (s(s - a)(s - b)(s - c))/"abcs"`
`= (["A(ΔABC")]^2/"abcs" ...[∵ "A(ΔABC") = sqrt(s(s - a)(s - b)(s - c))]`
= R.H.S.
APPEARS IN
संबंधित प्रश्न
Find the principal value of `cos^(-1) (sqrt3/2)`
Find the principal value of `sec^(-1) (2/sqrt(3))`
Find the principal value of `cot^(-1) (sqrt3)`
Find the value of the following:
`tan^(-1)(1) + cos^(-1) (-1/2) + sin^(-1) (-1/2)`
Find the value of the following:
If sin−1 x = y, then
Find the value of the following:
`cos^(-1) (cos (13pi)/6)`
Find the value of the following:
`tan^(-1) (tan (7x)/6)`
Prove that:
`tan^-1 ((sqrt(1 + x) - sqrt(1 - x))/(sqrt(1 + x) + sqrt(1 - x))) = pi/4 - 1/2 cos^-1 x`, for `- 1/sqrt2 <= x <= 1`
[Hint: put x = cos 2θ]
Find the domain of the following function:
`f(x) = sin^-1x + sinx`
Find the principal value of the following: tan- 1( - √3)
Find the principal value of the following: sin-1 `(1/sqrt(2))`
Prove the following:
`sin^-1(1/sqrt(2)) -3sin^-1(sqrt(3)/2) = -(3π)/(4)`
Prove the following:
`sin^-1(-1/2) + cos^-1(-sqrt(3)/2) = cos^-1(-1/2)`
Prove the following:
`tan^-1[sqrt((1 - cosθ)/(1 + cosθ))] = θ/(2)`, if θ ∈ (– π, π).
In ΔABC, prove the following:
`(cos A)/a + (cos B)/b + (cos C)/c = (a^2 + b^2 + c^2)/(2abc)`
sin−1x − cos−1x = `pi/6`, then x = ______
The principal value of sin−1`(1/2)` is ______
The principal value of cos−1`(-1/2)` is ______
If `sin(sin^-1(1/5) + cos^-1(x))` = 1, then x = ______
Evaluate cot(tan−1(2x) + cot−1(2x))
Prove that `2 tan^-1 (3/4) = tan^-1(24/7)`
Prove that sin `[tan^-1 ((1 - x^2)/(2x)) + cos^-1 ((1 - x^2)/(1 + x^2))]` = 1
Prove that `2 tan^-1 (1/8) + tan^-1 (1/7) + 2tan^-1 (1/5) = pi/4`
Prove that:
2 tan-1 (x) = `sin^-1 ((2x)/(1 + x^2))`
Solve: tan-1 (x + 1) + tan-1 (x – 1) = `tan^-1 (4/7)`
Evaluate: sin`[1/2 cos^-1 (4/5)]`
Express `tan^-1 [(cos x)/(1 - sin x)], - pi/2 < x < (3pi)/2` in the simplest form.
Express `tan^-1 ((cos x - sin x)/(cos x + sin x))`, 0 < x < π in the simplest form.
Find the principal value of `sec^-1 (- sqrt(2))`
Choose the correct alternative:
cos 2θ cos 2ϕ+ sin2 (θ – ϕ) – sin2 (θ + ϕ) is equal to
If `sin^-1(x/13) + cosec^-1(13/12) = pi/2`, then the value of x is ______
Which of the following function has period 2?
If `sin^-1x + cos^-1y = (3pi)/10,` then `cos^-1x + sin^-1y =` ______
If `sin^-1 3/5 + cos^-1 12/13 = sin^-1 P`, then P is equal to ______
If sin `(sin^-1 1/3 + cos^-1 x) = 1`, then the value of x is ______.
The value of cot (- 1110°) is equal to ______.
The domain of the function y = sin–1 (– x2) is ______.
The domain of y = cos–1(x2 – 4) is ______.
All trigonometric functions have inverse over their respective domains.
When `"x" = "x"/2`, then tan x is ____________.
`"sin"^2 25° + "sin"^2 65°` is equal to ____________.
If `"x + y" = "x"/4` then (1+ tanx)(1 + tany) is equal to ____________.
If sin-1 x – cos-1 x `= pi/6,` then x = ____________.
`"sin"^-1 (-1/2)`
`"cos"^-1 1/2 + 2 "sin"^-1 1/2` is equal to ____________.
If 6sin-1 (x2 – 6x + 8.5) = `pi`, then x is equal to ____________.
`"sin" ["cot"^-1 {"cos" ("tan"^-1 "x")}] =` ____________.
The range of sin-1 x + cos-1 x + tan-1 x is ____________.
The equation 2cos-1 x + sin-1 x `= (11pi)/6` has ____________.
If tan-1 x – tan-1 y = tan-1 A, then A is equal to ____________.
`sin[π/3 - sin^-1 (-1/2)]` is equal to:
If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt "cos" alpha) = "x",` then sinx is equal to ____________.
The equation of the tangent to the curve given by x = a sin3t, y = bcos3t at a point where t = `pi/2` is
If A = `[(cosx, sinx),(-sinx, cosx)]`, then A1 A–1 is
If `sqrt(2)` sec θ + tan θ = 1, then the general value of θ is
Find the principal value of `tan^-1 (sqrt(3))`
If f(x) = x5 + 2x – 3, then (f–1)1 (–3) = ______.
`lim_(n→∞)tan{sum_(r = 1)^n tan^-1(1/(1 + r + r^2))}` is equal to ______.
Number of values of x satisfying the system of equations `sin^-1sqrt(2 + e^(-2x) - 2e^-x) + sec^-1sqrt(1 - x^2 + x^4) = π/2` and `5^(1+tan^-1x)` = 4 + [cos–1x] is ______ (where [.] denotes greatest integer function)
`cot^-1(sqrt(cos α)) - tan^-1 (sqrt(cos α))` = x, then sin x = ______.
Number of values of x which lie in [0, 2π] and satisfy the equation
`(cos x/4 - 2sinx) sinx + (1 + sin x/4 - 2cosx)cosx` = 0
The value of cos (2cos–1 x + sin–1 x) at x = `1/5` is ______.
If tan–1 2x + tan–1 3x = `π/4`, then x = ______.
The value of `cos^-1(cos(π/2)) + cos^-1(sin((2π)/2))` is ______.
Derivative of `tan^-1(x/sqrt(1 - x^2))` with respect sin–1(3x – 4x3) is ______.
If y = `tan^-1 (sqrt(1 + x^2) - sqrt(1 - x^2))/(sqrt(1 + x^2) + sqrt(1 - x^2))`, then `dy/dx` is equal to ______.
If cos–1 x > sin–1 x, then ______.
If –1 ≤ x ≤ 1, the prove that sin–1 x + cos–1 x = `π/2`
Find the value of `sin(2cos^-1 sqrt(5)/3)`.