Advertisements
Advertisements
प्रश्न
Express `tan^-1 ((cos x - sin x)/(cos x + sin x))`, 0 < x < π in the simplest form.
उत्तर
Consider `((cos x - sin x)/(cos x + sin x))`
Dividing the numerator and denominator by cos x.
we get `(((cosx)/(cosx) - (sin x)/(cosx))/((cos x)/(cos x) + (sin x)/(cosx)))`
`= (1 - tan x)/(1 + tan x)`
`= (tan pi/4 - tan x)/(1 + tan pi/4 tan x)`
`[because tan pi/4 = 1]`
`= tan (pi/4 - x) [because tan ("A - B") = (tan "A" - tan "B")/(1 + tan "A" tan "B")]`
`therefore tan^-1 [tan (pi/4 - x)]`
`= pi/4 - x`
which is the simplest form.
APPEARS IN
संबंधित प्रश्न
Find the domain of `f(x)=cotx+cot^-1x`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of cos `A/2`
In ΔABC prove that `sin "A"/(2). sin "B"/(2). sin "C"/(2) = ["A(ΔABC)"]^2/"abcs"`
If `sin^-1x + cos^-1y = (3pi)/10,` then `cos^-1x + sin^-1y =` ______
The principal value of `tan^{-1(sqrt3)}` is ______
Prove that `tan^-1 1/4 + tan^-1 2/9 = sin^-1 1/sqrt(5)`
If tan-1 3 + tan-1 x = tan-1 8, then x = ____________.
`"sin"^-1 (1/sqrt2)`
`"tan"^-1 sqrt3 - "sec"^-1 (-2)` is equal to ____________.
Value of `sin(pi/3 - sin^1 (- 1/2))` is equal to