Advertisements
Advertisements
प्रश्न
Express `tan^-1 ((cos x - sin x)/(cos x + sin x))`, 0 < x < π in the simplest form.
उत्तर
Consider `((cos x - sin x)/(cos x + sin x))`
Dividing the numerator and denominator by cos x.
we get `(((cosx)/(cosx) - (sin x)/(cosx))/((cos x)/(cos x) + (sin x)/(cosx)))`
`= (1 - tan x)/(1 + tan x)`
`= (tan pi/4 - tan x)/(1 + tan pi/4 tan x)`
`[because tan pi/4 = 1]`
`= tan (pi/4 - x) [because tan ("A - B") = (tan "A" - tan "B")/(1 + tan "A" tan "B")]`
`therefore tan^-1 [tan (pi/4 - x)]`
`= pi/4 - x`
which is the simplest form.
APPEARS IN
संबंधित प्रश्न
Find the principal value of `sec^(-1) (2/sqrt(3))`
Prove the following:
`cos^-1(3/5) + cos^-1(4/5) = pi/(2)`
Solve: tan-1 (x + 1) + tan-1 (x – 1) = `tan^-1 (4/7)`
If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then θ = ______
3 tan-1 a is equal to ____________.
`"cos" ["tan"^-1 {"sin" ("cot"^-1 "x")}]` is equal to ____________.
sin 6θ + sin 4θ + sin 2θ = 0, then θ =
If θ = `sin^-1((2x)/(1 + x^2)) + cos^-1((1 - x^2)/(1 + x^2))`, for `x ≥ 3/2` then the absolute value of `((cosθ + tanθ + 4)/secθ)` is ______.
Number of values of x which lie in [0, 2π] and satisfy the equation
`(cos x/4 - 2sinx) sinx + (1 + sin x/4 - 2cosx)cosx` = 0
Prove that:
tan–1x + tan–1y = `π + tan^-1((x + y)/(1 - xy))`, provided x > 0, y > 0, xy > 1