Advertisements
Advertisements
प्रश्न
Prove that `tan^-1 1/4 + tan^-1 2/9 = sin^-1 1/sqrt(5)`
उत्तर
L.H.S. = `tan^-1 1/4 + tan^-1 2/9`
= `tan^-1 (1/4 + 2/9)/(1 - 1/4 * 2/9)`
= `tan^-1 (9 + 8)/(36 - 2)`
= `tan^-1 1/2`
= `sin^-1 1/sqrt(5)`.
APPEARS IN
संबंधित प्रश्न
Show that `2sin^-1(3/5) = tan^-1(24/7)`
Find the set of values of `cosec^-1(sqrt3/2)`
Evaluate the following:
`cot^-1 1/sqrt3-\text(cosec)^-1(-2)+sec^-1(2/sqrt3)`
Evaluate the following:
`cot^-1{2cos(sin^-1 sqrt3/2)}`
Evaluate: tan `[ 2 tan^-1 (1)/(2) – cot^-1 3]`
Prove the following:
`sin^-1(3/5) + cos^-1(12/13) = sin^-1(56/65)`
Prove the following:
`tan^-1["cosθ + sinθ"/"cosθ - sinθ"] = pi/(4) + θ, if θ ∈ (- pi/4, pi/4)`
sin−1x − cos−1x = `pi/6`, then x = ______
Express `tan^-1 [(cos x)/(1 - sin x)], - pi/2 < x < (3pi)/2` in the simplest form.
If `sin^-1(x/13) + cosec^-1(13/12) = pi/2`, then the value of x is ______
If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then θ = ______
`(sin^-1(-1/2) + tan^-1(-1/sqrt(3)))/(sec^-1 (-2/sqrt(3)) + cos^-1(1/sqrt(2))` = ______.
If `"sin"^-1("x"^2 - 7"x" + 12) = "n"pi, AA "n" in "I"`, then x = ____________.
`"sin"^-1 (1/sqrt2)`
If tan-1 (x – 1) + tan-1 x + tan-1 (x + 1) = tan-1 3x, then the values of x are ____________.
3 tan-1 a is equal to ____________.
The equation of the tangent to the curve given by x = a sin3t, y = bcos3t at a point where t = `pi/2` is
If `sqrt(2)` sec θ + tan θ = 1, then the general value of θ is
what is the value of `cos^-1 (cos (13pi)/6)`
Assertion (A): The domain of the function sec–12x is `(-∞, - 1/2] ∪ pi/2, ∞)`
Reason (R): sec–1(–2) = `- pi/4`
If sin–1a + sin–1b + sin–1c = π, then find the value of `asqrt(1 - a^2) + bsqrt(1 - b^2) + csqrt(1 - c^2)`.
The value of cos (2cos–1 x + sin–1 x) at x = `1/5` is ______.
If tan–1 2x + tan–1 3x = `π/4`, then x = ______.
If y = `tan^-1 (sqrt(1 + x^2) - sqrt(1 - x^2))/(sqrt(1 + x^2) + sqrt(1 - x^2))`, then `dy/dx` is equal to ______.
Find the value of `cos(x/2)`, if tan x = `5/12` and x lies in third quadrant.
If –1 ≤ x ≤ 1, the prove that sin–1 x + cos–1 x = `π/2`