मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Show that 2sin-1(35)=tan-1(247) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Show that `2sin^-1(3/5) = tan^-1(24/7)`

बेरीज

उत्तर


Let x = `sin^(-1)(3/5)`

sin x = `3/5`

tan x = `(3/4)`

x = `tan^(-1)(3/4)`

`sin^(-1)(3/5) = tan^(-1)(3/4)`

`2sin^(-1)(3/5) = 2tan^(-1)(3/4)`

= `tan^(-1)(3/4) + tan^(-1)(3/4)`

= `tan^(-1)(((3/4) + (3/4))/(1 - 3/4(3/4)))`

= `tan^(-1)((6/4)/(7/16))`

= `tan^(-1)(6/4 xx 16/7)`

= `tan^(-1)(24/7)`

`sin^(-1)(3/5) = tan^(-1)(24/7)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Inverse Trigonometric Functions - Exercise 2.3 [पृष्ठ ५१]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 2 Inverse Trigonometric Functions
Exercise 2.3 | Q 3 | पृष्ठ ५१

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find the principal value of  `cos^(-1) (sqrt3/2)`


Find the principal value of cosec−1 (2)


Find the principal value of `tan^(-1) (-sqrt3)`


Find the principal value of tan−1 (−1)


Find the value of the following:

`tan^(-1)(1) + cos^(-1) (-1/2) + sin^(-1) (-1/2)`


Find the value of the following:

`tan^(-1) (tan  (7x)/6)`


`sin^-1  1/2-2sin^-1  1/sqrt2`


Evaluate the following:

`tan^-1 1+cos^-1 (-1/2)+sin^-1(-1/2)`


Find the set of values of `cosec^-1(sqrt3/2)`


Evaluate the following:

`\text(cosec)^-1(-2/sqrt3)+2cot^-1(-1)`


Evaluate: tan `[ 2 tan^-1  (1)/(2) – cot^-1 3]`


In ΔABC, if a = 18, b = 24, c = 30 then find the values of tan `A/2`


In ΔABC prove that `sin  "A"/(2). sin  "B"/(2). sin  "C"/(2) = ["A(ΔABC)"]^2/"abcs"`


Find the principal value of the following: cosec- 1(2)


Find the principal value of the following: tan-1(– 1)


Find the principal value of the following: sin-1 `(1/sqrt(2))`


Find the principal value of the following: cos- 1`(-1/2)`


Prove the following:

`cos^-1(3/5) + cos^-1(4/5) = pi/(2)`


Prove the following:

`tan^-1(1/2) + tan^-1(1/3) = pi/(4)`


In ΔABC, prove the following:

`(cos A)/a + (cos B)/b + (cos C)/c = (a^2 + b^2 + c^2)/(2abc)`


Find the principal solutions of the following equation:
tan 5θ = -1


The principal value of sin−1`(1/2)` is ______


The principal value of cos−1`(-1/2)` is ______


If `sin(sin^-1(1/5) + cos^-1(x))` = 1, then x = ______


Evaluate cot(tan−1(2x) + cot−1(2x))


Evaluate `cos[pi/6 + cos^-1 (- sqrt(3)/2)]`


If tan−1x + tan−1y + tan−1z = π, then show that `1/(xy) + 1/(yz) + 1/(zx)` = 1


Prove that `2 tan^-1 (1/8) + tan^-1 (1/7) + 2tan^-1 (1/5) = pi/4`


Find the principal value of the following:

`sin^-1 (- 1/2)`


Find the principal value of the following:

cosec-1 (2)


Prove that:

2 tan-1 (x) = `sin^-1 ((2x)/(1 + x^2))`


Prove that `tan^-1 (m/n) - tan^-1 ((m - n)/(m + n)) = pi/4`


Express `tan^-1 [(cos x)/(1 - sin x)], - pi/2 < x < (3pi)/2` in the simplest form.


Express `tan^-1 ((cos x - sin x)/(cos x + sin x))`, 0 < x < π in the simplest form.


Find the principal value of `sin^-1  1/sqrt(2)`


Find the principal value of `sec^-1 (- sqrt(2))`


`sin^-1x + sin^-1  1/x + cos^-1x + cos^-1  1/x` = ______


In Δ ABC, with the usual notations, if sin B sin C = `"bc"/"a"^2`, then the triangle is ______.


sin[3 sin-1 (0.4)] = ______.


The principal value of `tan^{-1(sqrt3)}` is ______  


`sin^2(sin^-1  1/2) + tan^2 (sec^-1  2) + cot^2(cosec^-1  4)` = ______.


The principal value of `sin^-1 (sin  (3pi)/4)` is ______.


`cos(2sin^-1  3/4+cos^-1  3/4)=` ______.


If `tan^-1x + tan^-1y = (4pi)/5`, then `cot^-1x + cot^-1y` equals ______.


The value of `sin^-1(cos  (53pi)/5)` is ______ 


`sin{tan^-1((1 - x^2)/(2x)) + cos^-1((1 - x^2)/(1 + x^2))}` is equal to ______ 


The domain of y = cos–1(x2 – 4) is ______.


The equation tan–1x – cot–1x = `(1/sqrt(3))` has ______.


Show that `cos(2tan^-1  1/7) = sin(4tan^-1  1/3)`


Prove that `tan^-1  1/4 + tan^-1  2/9 = sin^-1  1/sqrt(5)`


All trigonometric functions have inverse over their respective domains.


`"cos"  2 theta` is not equal to ____________.


When `"x" = "x"/2`, then tan x is ____________.


If `"x + y" = "x"/4` then (1+ tanx)(1 + tany) is equal to ____________.


`"sin"  265° -  "cos"  265°` is ____________.


If tan-1 3 + tan-1 x = tan-1 8, then x = ____________.


`"sin"^-1 (-1/2)`


`"tan"^-1 (sqrt3)`


`"sin"^-1 (1/sqrt2)`


If tan-1 (x – 1) + tan-1 x + tan-1 (x + 1) = tan-1 3x, then the values of x are ____________.


`"sin" ["cot"^-1 {"cos" ("tan"^-1  "x")}] =` ____________.


The range of sin-1 x + cos-1 x + tan-1 x is ____________.


Find the value of sec2 (tan-1 2) + cosec2 (cot-1 3) ____________.


The equation 2cos-1 x + sin-1 x `= (11pi)/6` has ____________.


If tan-1 x – tan-1 y = tan-1 A, then A is equal to ____________.


`sin[π/3 - sin^-1 (-1/2)]` is equal to:


`"cos"^-1 ("cos" ((7pi)/6))` is equal to ____________.


`"tan"^-1 sqrt3 - "sec"^-1 (-2)` is equal to ____________.


The equation of the tangent to the curve given by x = a sin3t, y = bcos3t at a point where t = `pi/2` is


If A = `[(cosx, sinx),(-sinx, cosx)]`, then A1 A–1 is 


Which of the following functions is inverse of itself?


sin 6θ + sin 4θ + sin 2θ = 0, then θ =


If `sqrt(2)` sec θ + tan θ = 1, then the general value of θ is


If `(-1)/sqrt(2) ≤ x ≤ 1/sqrt(2)` then `sin^-1 (2xsqrt(1 - x^2))` is equal to


What is the value of `sin^-1(sin  (3pi)/4)`?


What is the values of `cos^-1 (cos  (7pi)/6)`


Assertion (A): The domain of the function sec–12x is `(-∞, - 1/2] ∪ pi/2, ∞)`

Reason (R): sec–1(–2) = `- pi/4`


If θ = `sin^-1((2x)/(1 + x^2)) + cos^-1((1 - x^2)/(1 + x^2))`, for `x ≥ 3/2` then the absolute value of `((cosθ + tanθ + 4)/secθ)` is ______.


Let x = sin–1(sin8) + cos–1(cos11) + tan–1(tan7), and x = k(π – 2.4) for an integer k, then the value of k is ______.


cos–1(cos10) is equal to ______.


`cot^-1(sqrt(cos α)) - tan^-1 (sqrt(cos α))` = x, then sin x = ______.


Number of values of x which lie in [0, 2π] and satisfy the equation

`(cos  x/4 - 2sinx) sinx + (1 + sin  x/4 - 2cosx)cosx` = 0


If ax + b (sec (tan–1 x)) = c and ay + b (sec.(tan–1 y)) = c, then `(x + y)/(1 - xy)` = ______.


If x ∈ R – {0}, then `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2)))`


If tan–1 2x + tan–1 3x = `π/4`, then x = ______.


`(tan^-1 (sqrt(3)) - sec^-1(-2))/("cosec"^-1(-sqrt(2)) + cos^-1(-1/2))` is equal to ______.


Find the value of `cos(x/2)`, if tan x = `5/12` and x lies in third quadrant.


If sin–1x – cos–1x = `π/6`, then x = ______.


Solve for x:

5tan–1x + 3cot–1x = 2π


Find the value of `tan^-1(x/y) + tan^-1((y - x)/(y + x))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×