Advertisements
Advertisements
प्रश्न
Show that `cos(2tan^-1 1/7) = sin(4tan^-1 1/3)`
उत्तर
L.H.S. `cos(2tan^-1 1/7)`
= `cos[cos^-1 (1 - 1/49)/(1 + 1/49)]` .....`[because 2tan^-1x = cos^-1 (1 - x^2)/(1 + x^2)]`
= `cos[cos^-1 48/50]`
= `cos[cos^-1 24/25]`
= `24/25`
R.H.S `sin[4 tan^-1 1/3]`
= `sin[2tan^-1 ((2 xx 1/3)/(1 - 1/9))]` .....`[because 2tan^-1x = tan^-1 (2x)/(1 - x^2)]`
= `sin[2tan^-1 ((2/3)/(8/9))]`
= `sin[2tan^-1 3/4]`
= `sin[sin^-1 (2 xx 3/4)/(1 + 9/16)]` ......`[because 2tan^-1x = sin^-1 (2x)/(1 + x^2)]`
= `sin[sin^-1 24/25]`
⇒ `24/25`
L.H.S. = R.H.S.
Hence poved.
APPEARS IN
संबंधित प्रश्न
If `sin^-1(1-x) -2sin^-1x = pi/2` then x is
- -1/2
- 1
- 0
- 1/2
Show that:
`cos^(-1)(4/5)+cos^(-1)(12/13)=cos^(-1)(33/65)`
Find the principal value of cosec−1 (2)
Find the principal value of `cos^(-1) (-1/2)`
Find the domain of the following function:
`f(x) = sin^-1x + sinx`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of cosA
In ΔABC, if a = 18, b = 24, c = 30 then find the values of tan `A/2`
Find the principal value of the following:
`sin^-1 (- 1/2)`
Prove that:
`tan^-1 (4/3) + tan^-1 (1/7) = pi/4`
Evaluate: sin`[1/2 cos^-1 (4/5)]`
Evaluate: `cos (sin^-1 (4/5) + sin^-1 (12/13))`
Which of the following function has period 2?
The value of 2 `cot^-1 1/2 - cot^-1 4/3` is ______
`tan[2tan^-1 (1/3) - pi/4]` = ______.
`cos(2sin^-1 3/4+cos^-1 3/4)=` ______.
If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then θ = ______
If `3sin^-1((2x)/(1 + x^2)) - 4cos^-1((1 - x^2)/(1 + x^2)) + 2tan^-1((2x)/(1 - x^2)) = pi/3`, then x is equal to ______
The value of `sin^-1[cos(pi/3)] + sin^-1[tan((5pi)/4)]` is ______.
Prove that `tan^-1 1/4 + tan^-1 2/9 = sin^-1 1/sqrt(5)`
`"cos" 2 theta` is not equal to ____________.
`"tan"^-1 (sqrt3)`
`"cos"^-1 1/2 + 2 "sin"^-1 1/2` is equal to ____________.
`2 "tan"^-1 ("cos x") = "tan"^-1 (2 "cosec x")`
`sin[π/3 - sin^-1 (-1/2)]` is equal to:
what is the value of `cos^-1 (cos (13pi)/6)`
If f(x) = x5 + 2x – 3, then (f–1)1 (–3) = ______.
Find the principal value of `cot^-1 ((-1)/sqrt(3))`
If 2 tan–1 (cosx) = tan–1 (2 cosec x), then sin x + cos x is equal to ______.
Prove that:
tan–1x + tan–1y = `π + tan^-1((x + y)/(1 - xy))`, provided x > 0, y > 0, xy > 1