Advertisements
Advertisements
प्रश्न
Show that `cos(2tan^-1 1/7) = sin(4tan^-1 1/3)`
उत्तर
L.H.S. `cos(2tan^-1 1/7)`
= `cos[cos^-1 (1 - 1/49)/(1 + 1/49)]` .....`[because 2tan^-1x = cos^-1 (1 - x^2)/(1 + x^2)]`
= `cos[cos^-1 48/50]`
= `cos[cos^-1 24/25]`
= `24/25`
R.H.S `sin[4 tan^-1 1/3]`
= `sin[2tan^-1 ((2 xx 1/3)/(1 - 1/9))]` .....`[because 2tan^-1x = tan^-1 (2x)/(1 - x^2)]`
= `sin[2tan^-1 ((2/3)/(8/9))]`
= `sin[2tan^-1 3/4]`
= `sin[sin^-1 (2 xx 3/4)/(1 + 9/16)]` ......`[because 2tan^-1x = sin^-1 (2x)/(1 + x^2)]`
= `sin[sin^-1 24/25]`
⇒ `24/25`
L.H.S. = R.H.S.
Hence poved.
APPEARS IN
संबंधित प्रश्न
Find the principal value of `cosec^(-1)(-sqrt2)`
`sin^-1{cos(sin^-1 sqrt3/2)}`
Evaluate the following:
`cot^-1 1/sqrt3-\text(cosec)^-1(-2)+sec^-1(2/sqrt3)`
Solve for x:
`tan^-1 [(x-1),(x-2)] + tan^-1 [(x+1),(x+2)] = x/4`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of sinA
Find the principal value of the following: `sin^-1 (1/2)`
Find the principal value of the following: cosec- 1(2)
Find the principal value of the following: tan-1(– 1)
Evaluate the following:
`"cosec"^-1(-sqrt(2)) + cot^-1(sqrt(3))`
Prove the following:
`cos^-1(3/5) + cos^-1(4/5) = pi/(2)`
Prove the following:
`tan^-1["cosθ + sinθ"/"cosθ - sinθ"] = pi/(4) + θ, if θ ∈ (- pi/4, pi/4)`
In ΔABC, prove the following:
`(cos A)/a + (cos B)/b + (cos C)/c = (a^2 + b^2 + c^2)/(2abc)`
Find the principal solutions of the following equation:
sin 2θ = `− 1/(sqrt2)`
Show that `tan^-1 (1/2) + tan^-1 (2/11) = tan^-1 (3/4)`
Evaluate:
`cos[tan^-1 (3/4)]`
Evaluate: `cos (sin^-1 (4/5) + sin^-1 (12/13))`
Find the principal value of `cos^-1 sqrt(3)/2`
The value of cot `(tan^-1 2x + cot^-1 2x)` is ______
If `sin^-1 3/5 + cos^-1 12/13 = sin^-1 P`, then P is equal to ______
The value of cot (- 1110°) is equal to ______.
The domain of the function defined by f(x) = sin–1x + cosx is ______.
Show that `sin^-1 5/13 + cos^-1 3/5 = tan^-1 63/16`
The value of `"cos"^-1 ("cos" ((33 pi)/5))` is ____________.
If `"x" in (- pi/2, pi/2), "then the value of tan"^-1 ("tan x"/4) + "tan"^-1 ((3 "sin" 2 "x")/(5 + 3 "cos" 2 "x"))` is ____________.
`"tan"^-1 sqrt3 - "sec"^-1 (-2)` is equal to ____________.
Find the principal value of `tan^-1 (sqrt(3))`
If `sin(sin^-1 1/5 + cos^-1 x) = 1`, the what will be the value of x?
If sin–1a + sin–1b + sin–1c = π, then find the value of `asqrt(1 - a^2) + bsqrt(1 - b^2) + csqrt(1 - c^2)`.
The value of `cos^-1(cos(π/2)) + cos^-1(sin((2π)/2))` is ______.