Advertisements
Advertisements
प्रश्न
Solve for x:
`tan^-1 [(x-1),(x-2)] + tan^-1 [(x+1),(x+2)] = x/4`
उत्तर
`tan^-1 [((x-1)/(x-2)+ (x+1)/(x+2))/(1-((x-1)/(x-2)) ((x+1)/(x+2))]] = pi/4`
`((x-1)(x+2)+(x + 1)(x-2))/((x-2)(x+2)-(x-1)(x+1))= tan pi/4`
`(x^2 + 2x - x - 2+ x^2 - 2x + x-2)/((x^2-4)-(x^2-1))=1`
`(2x^2 - 4)/-3 = 1`
`2x^2 - 4 =-3 `
`2x^2 = -1`
`x^2 = 1/2`
`x = ± 1/sqrt2`
APPEARS IN
संबंधित प्रश्न
If `sin^-1(1-x) -2sin^-1x = pi/2` then x is
- -1/2
- 1
- 0
- 1/2
Find the value of the following:
`tan^(-1)(1) + cos^(-1) (-1/2) + sin^(-1) (-1/2)`
Find the set of values of `cosec^-1(sqrt3/2)`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of cos `A/2`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of A(ΔABC)
Find the principal value of the following: `sin^-1 (1/2)`
Find the principal value of the following: cosec- 1(2)
Prove the following:
`sin^-1(1/sqrt(2)) -3sin^-1(sqrt(3)/2) = -(3π)/(4)`
Prove the following:
`sin^-1(-1/2) + cos^-1(-sqrt(3)/2) = cos^-1(-1/2)`
`tan^-1(tan (7pi)/6)` = ______
Prove that `2 tan^-1 (3/4) = tan^-1(24/7)`
Solve `tan^-1 2x + tan^-1 3x = pi/4`
Evaluate: `cos (sin^-1 (4/5) + sin^-1 (12/13))`
Find the principal value of `sec^-1 (- sqrt(2))`
In a triangle ABC, ∠C = 90°, then the value of `tan^-1 ("a"/("b + c")) + tan^-1("b"/("c + a"))` is ______.
Prove that `cot(pi/4 - 2cot^-1 3)` = 7
If sin-1 x – cos-1 x `= pi/6,` then x = ____________.
`"tan"^-1 (sqrt3)`
If 6sin-1 (x2 – 6x + 8.5) = `pi`, then x is equal to ____________.
If `"sin"^-1("x"^2 - 7"x" + 12) = "n"pi, AA "n" in "I"`, then x = ____________.
`"cos"^-1 ("cos" ((7pi)/6))` is equal to ____________.
`sin(tan^-1x), |x| < 1` is equal to
`tan^-1 (1 - x)/(1 + x) = 1/2tan^-1x, (x > 0)`, x then will be equal to.
what is the value of `cos^-1 (cos (13pi)/6)`
What is the values of `cos^-1 (cos (7pi)/6)`
If `sin(sin^-1 1/5 + cos^-1 x) = 1`, the what will be the value of x?
If f'(x) = x–1, then find f(x)
If θ = `sin^-1((2x)/(1 + x^2)) + cos^-1((1 - x^2)/(1 + x^2))`, for `x ≥ 3/2` then the absolute value of `((cosθ + tanθ + 4)/secθ)` is ______.
Prove that:
tan–1x + tan–1y = `π + tan^-1((x + y)/(1 - xy))`, provided x > 0, y > 0, xy > 1