English

Solve for X: Tan − 1 X − 1 X − 2 + Tan − 1 X + 1 X + 2 = X 4 - Mathematics

Advertisements
Advertisements

Question

Solve for x:
`tan^-1 [(x-1),(x-2)] + tan^-1 [(x+1),(x+2)] = x/4`

Sum

Solution

`tan^-1    [((x-1)/(x-2)+ (x+1)/(x+2))/(1-((x-1)/(x-2)) ((x+1)/(x+2))]] =  pi/4`

`((x-1)(x+2)+(x + 1)(x-2))/((x-2)(x+2)-(x-1)(x+1))= tan pi/4`

`(x^2 + 2x - x - 2+ x^2 - 2x + x-2)/((x^2-4)-(x^2-1))=1`

`(2x^2 - 4)/-3 = 1`

`2x^2 - 4 =-3 `
`2x^2 = -1`
`x^2 = 1/2`
`x = ± 1/sqrt2`

shaalaa.com
  Is there an error in this question or solution?
2018-2019 (March) Set 1

RELATED QUESTIONS

Show that `2sin^-1(3/5) = tan^-1(24/7)`


Find the principal values of `sin^(-1) (-1/2)`


Find the principal value of tan−1 (−1)


Find the principal value of  `sec^(-1) (2/sqrt(3))`


Find the principal value of  `cos^(-1) (-1/sqrt2)`


Find the principal value of `sin^-1(1/sqrt2)`


`sin^-1{cos(sin^-1  sqrt3/2)}`


Evaluate: tan `[ 2 tan^-1  (1)/(2) – cot^-1 3]`


Evaluate the following:

`tan^-1 sqrt(3) - sec^-1 (-2)`


Prove the following:

`sin^-1(-1/2) + cos^-1(-sqrt(3)/2) = cos^-1(-1/2)`


Prove the following:

`sin^-1(3/5) + cos^-1(12/13) = sin^-1(56/65)`


Show that `sin^-1(3/5)  + sin^-1(8/17) = cos^-1(36/85)`


Show that `tan^-1 (1/2) + tan^-1 (2/11) = tan^-1 (3/4)`


Find the principal value of `sin^-1  1/sqrt(2)`


sin[3 sin-1 (0.4)] = ______.


If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then θ = ______ 


If `3tan^-1x +cot^-1x = pi`, then xis equal to ______.


The domain of y = cos–1(x2 – 4) is ______.


`"cos"  2 theta` is not equal to ____________.


If `"sin"^-1("x"^2 - 7"x" + 12) = "n"pi, AA "n" in "I"`, then x = ____________.


3 tan-1 a is equal to ____________.


The equation of the tangent to the curve given by x = a sin3t, y = bcos3t at a point where t = `pi/2` is


If `sqrt(2)` sec θ + tan θ = 1, then the general value of θ is


`sin(tan^-1x), |x| < 1` is equal to


If `sin(sin^-1  1/5 + cos^-1 x) = 1`, the what will be the value of x?


If x ∈ R – {0}, then `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2)))`


`(tan^-1 (sqrt(3)) - sec^-1(-2))/("cosec"^-1(-sqrt(2)) + cos^-1(-1/2))` is equal to ______.


Find the value of `sin(2cos^-1  sqrt(5)/3)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×