Advertisements
Advertisements
Question
Solve for x:
`tan^-1 [(x-1),(x-2)] + tan^-1 [(x+1),(x+2)] = x/4`
Solution
`tan^-1 [((x-1)/(x-2)+ (x+1)/(x+2))/(1-((x-1)/(x-2)) ((x+1)/(x+2))]] = pi/4`
`((x-1)(x+2)+(x + 1)(x-2))/((x-2)(x+2)-(x-1)(x+1))= tan pi/4`
`(x^2 + 2x - x - 2+ x^2 - 2x + x-2)/((x^2-4)-(x^2-1))=1`
`(2x^2 - 4)/-3 = 1`
`2x^2 - 4 =-3 `
`2x^2 = -1`
`x^2 = 1/2`
`x = ± 1/sqrt2`
APPEARS IN
RELATED QUESTIONS
Show that `2sin^-1(3/5) = tan^-1(24/7)`
Find the principal values of `sin^(-1) (-1/2)`
Find the principal value of tan−1 (−1)
Find the principal value of `sec^(-1) (2/sqrt(3))`
Find the principal value of `cos^(-1) (-1/sqrt2)`
Find the principal value of `sin^-1(1/sqrt2)`
`sin^-1{cos(sin^-1 sqrt3/2)}`
Evaluate: tan `[ 2 tan^-1 (1)/(2) – cot^-1 3]`
Evaluate the following:
`tan^-1 sqrt(3) - sec^-1 (-2)`
Prove the following:
`sin^-1(-1/2) + cos^-1(-sqrt(3)/2) = cos^-1(-1/2)`
Prove the following:
`sin^-1(3/5) + cos^-1(12/13) = sin^-1(56/65)`
Show that `sin^-1(3/5) + sin^-1(8/17) = cos^-1(36/85)`
Show that `tan^-1 (1/2) + tan^-1 (2/11) = tan^-1 (3/4)`
Find the principal value of `sin^-1 1/sqrt(2)`
sin[3 sin-1 (0.4)] = ______.
If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then θ = ______
If `3tan^-1x +cot^-1x = pi`, then xis equal to ______.
The domain of y = cos–1(x2 – 4) is ______.
`"cos" 2 theta` is not equal to ____________.
If `"sin"^-1("x"^2 - 7"x" + 12) = "n"pi, AA "n" in "I"`, then x = ____________.
3 tan-1 a is equal to ____________.
The equation of the tangent to the curve given by x = a sin3t, y = bcos3t at a point where t = `pi/2` is
If `sqrt(2)` sec θ + tan θ = 1, then the general value of θ is
`sin(tan^-1x), |x| < 1` is equal to
If `sin(sin^-1 1/5 + cos^-1 x) = 1`, the what will be the value of x?
If x ∈ R – {0}, then `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2)))`
`(tan^-1 (sqrt(3)) - sec^-1(-2))/("cosec"^-1(-sqrt(2)) + cos^-1(-1/2))` is equal to ______.
Find the value of `sin(2cos^-1 sqrt(5)/3)`.