Advertisements
Advertisements
Question
Evaluate: tan `[ 2 tan^-1 (1)/(2) – cot^-1 3]`
Solution
tan `[ 2 tan^-1 (1)/(2) - cot^-1 3]`
= tan `[tan^-1((2xx(1)/(2))/(1-(1/2)^2]) – cot^-1 3]`
= tan `[tan^-1{(1)/(1-(1)/(4)}} - tan^-1 1/3]`
= tan `[tan^-1 4/3 - tan^-1 (1)/(3)]`
= tan `[tan^-1 (((4)/(3) - (1)/(3))/(1+(4)/(9)))]`
= tan `[tan^-1 (((4 -1)/(3))/((9+4)/(9)))]`
= tan `[tan^-1 (1/(13/9))]`
= tan `[tan^-1 ((9)/(13)) ]`
= `(9)/(13)`
APPEARS IN
RELATED QUESTIONS
Show that:
`cos^(-1)(4/5)+cos^(-1)(12/13)=cos^(-1)(33/65)`
Find the principal value of `sec^(-1) (2/sqrt(3))`
Find the value of the following:
`cos^(-1) (1/2) + 2 sin^(-1)(1/2)`
Evaluate the following:
`tan^-1(-1/sqrt3)+cot^-1(1/sqrt3)+tan^-1(sin(-pi/2))`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of cos `A/2`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of tan `A/2`
In ΔABC prove that `sin "A"/(2). sin "B"/(2). sin "C"/(2) = ["A(ΔABC)"]^2/"abcs"`
Evaluate the following:
`tan^-1(1) + cos^-1(1/2) + sin^-1(1/2)`
Prove the following:
`tan^-1(1/2) + tan^-1(1/3) = pi/(4)`
`tan^-1(tan (7pi)/6)` = ______
Show that `sin^-1(3/5) + sin^-1(8/17) = cos^-1(36/85)`
Express `tan^-1 [(cos x)/(1 - sin x)], - pi/2 < x < (3pi)/2` in the simplest form.
If `sin^-1x + cos^-1y = (3pi)/10,` then `cos^-1x + sin^-1y =` ______
The principal value of `sin^-1 (sin (3pi)/4)` is ______.
The value of `sin^-1(cos (53pi)/5)` is ______
`sin{tan^-1((1 - x^2)/(2x)) + cos^-1((1 - x^2)/(1 + x^2))}` is equal to ______
If 2 tan–1(cos θ) = tan–1(2 cosec θ), then show that θ = π 4, where n is any integer.
`"sin"^2 25° + "sin"^2 65°` is equal to ____________.
If `"x + y" = "x"/4` then (1+ tanx)(1 + tany) is equal to ____________.
`"sin" ["cot"^-1 {"cos" ("tan"^-1 "x")}] =` ____________.
Find the value of sec2 (tan-1 2) + cosec2 (cot-1 3) ____________.
`sin[π/3 - sin^-1 (-1/2)]` is equal to:
If `"sin"^-1("x"^2 - 7"x" + 12) = "n"pi, AA "n" in "I"`, then x = ____________.
If A = `[(cosx, sinx),(-sinx, cosx)]`, then A1 A–1 is
If |Z1| = |Z2| and arg (Z1) + arg (Z2) = 0, then
Domain and Rariges of cos–1 is:-
If `sin(sin^-1 1/5 + cos^-1 x) = 1`, the what will be the value of x?
If sin–1a + sin–1b + sin–1c = π, then find the value of `asqrt(1 - a^2) + bsqrt(1 - b^2) + csqrt(1 - c^2)`.
The value of `tan(cos^-1 4/5 + tan^-1 2/3)` is ______.