English

Show that: cos^(-1)(4/5)+cos^(-1)(12/13)=cos^(-1)(33/65) - Mathematics and Statistics

Advertisements
Advertisements

Question

Show that:

`cos^(-1)(4/5)+cos^(-1)(12/13)=cos^(-1)(33/65)`

Sum

Solution

Let a = `"cos"^-1 (4/5)` and b = `"cos"^-1 (12/13)`

Let a = `"cos"^-1 (4/5)`

cos a = `4/5`

We know that

sin2a = 1 - cos2


sin a = `sqrt (1-"cos"^2 "a")`


`= sqrt (1 - (4/5)^2) = sqrt (1 - 16/25)`


`= sqrt ((25-16)/25) = sqrt (9/25) = 3/5`


Let b = `"cos"^-1 (12/13)`

cos b = `12/13`

W know that

sin2b = 1 - cos2


sin b = `sqrt (1 - "cos"^2 "b")`


`= sqrt (1 - (12/13)^2) = sqrt (1 - 144/169)`


`= sqrt ((169-144)/169) = sqrt (25/169) = 5/13`

We know that 

cos (a+b) = cos a cos b - sin a sin b

Putting values 

cos a = `4/5` , sin a = `3/5`

& cos b = `12/13` , sin b = `5/13`

 

cos (a+b) = `4/5 xx 12/13 xx 3/5 xx 5/13`


`= 48/65 - 3/13`


`= (48 - 15)/65`


`= 33/65`

∴ cos (a+b) = `33/65`

a + b = cos-1 `(33/65)`

`"cos"^-1 4/5 + "cos"^-1 (12/15) = "cos"^-1 (33/65)`

Hence LH.S = R.H.S

Hence proved.

shaalaa.com
  Is there an error in this question or solution?
2013-2014 (March)

RELATED QUESTIONS

If `tan^-1((x-1)/(x-2))+cot^-1((x+2)/(x+1))=pi/4; `


Find the principal value of `cosec^(-1)(-sqrt2)`


Find the value of the following:

`cos^(-1) (1/2) + 2 sin^(-1)(1/2)`


Find the value of the following:

If sin−1 x = y, then


`tan^(-1) sqrt3 - sec^(-1)(-2)` is equal to ______.


Find the value of the following:

`tan^(-1) (tan  (7x)/6)`


`sin^-1  1/2-2sin^-1  1/sqrt2`


Find the domain of the following function:

`f(x)sin^-1sqrt(x^2-1)`


Evaluate the following:

`tan^-1 1+cos^-1 (-1/2)+sin^-1(-1/2)`


Evaluate the following:

`tan^-1(tan  (5pi)/6)+cos^-1{cos((13pi)/6)}`


Find the set of values of `cosec^-1(sqrt3/2)`


Evaluate the following:

`tan^-1(-1/sqrt3)+cot^-1(1/sqrt3)+tan^-1(sin(-pi/2))`


Prove that:
cot−1 7 + cot​−1 8 + cot​−1 18 = cot​−1 3 .


In ΔABC, if a = 18, b = 24, c = 30 then find the values of cos `A/2`


In ΔABC prove that `sin  "A"/(2). sin  "B"/(2). sin  "C"/(2) = ["A(ΔABC)"]^2/"abcs"`


Find the principal value of the following: tan- 1( - √3)


Evaluate the following:

`"cosec"^-1(-sqrt(2)) + cot^-1(sqrt(3))`


Prove the following:

`sin^-1(-1/2) + cos^-1(-sqrt(3)/2) = cos^-1(-1/2)`


Prove the following: 

`2tan^-1(1/3) = tan^-1(3/4)`


The principal value of sin−1`(1/2)` is ______


`tan^-1(tan  (7pi)/6)` = ______


Evaluate:

`sin[cos^-1 (3/5)]`


Show that `sin^-1(3/5)  + sin^-1(8/17) = cos^-1(36/85)`


Find the principal value of the following:

cosec-1 (2)


Prove that:

2 tan-1 (x) = `sin^-1 ((2x)/(1 + x^2))`


Evaluate:

`cos[tan^-1 (3/4)]`


Find the principal value of `sin^-1  1/sqrt(2)`


In Δ ABC, with the usual notations, if sin B sin C = `"bc"/"a"^2`, then the triangle is ______.


Which of the following function has period 2?


`sin^2(sin^-1  1/2) + tan^2 (sec^-1  2) + cot^2(cosec^-1  4)` = ______.


If 2tan-1 (cos x) = tan-1 (cosec2 x), then x = ______.


`cos(2sin^-1  3/4+cos^-1  3/4)=` ______.


`sin{tan^-1((1 - x^2)/(2x)) + cos^-1((1 - x^2)/(1 + x^2))}` is equal to ______ 


If `3tan^-1x +cot^-1x = pi`, then xis equal to ______.


The value of `sin^-1[cos(pi/3)] + sin^-1[tan((5pi)/4)]` is ______.


Show that `2tan^-1 (-3) = (-pi)/2 + tan^-1 ((-4)/3)`


All trigonometric functions have inverse over their respective domains.


`("cos" 8° -  "sin" 8°)/("cos" 8° +  "sin" 8°)`  is equal to ____________.


If tan-1 3 + tan-1 x = tan-1 8, then x = ____________.


`"sin"^-1 (-1/2)`


`"cos"^-1 1/2 + 2  "sin"^-1  1/2` is equal to ____________.


`2  "tan"^-1 ("cos x") = "tan"^-1 (2  "cosec x")`


3 tan-1 a is equal to ____________.


The equation 2cos-1 x + sin-1 x `= (11pi)/6` has ____________.


If `"x" in (- pi/2, pi/2), "then the value of tan"^-1 ("tan x"/4) + "tan"^-1 ((3 "sin" 2 "x")/(5 + 3 "cos" 2 "x"))` is ____________.


`sin[π/3 - sin^-1 (-1/2)]` is equal to:


`"cos"^-1 ("cos" ((7pi)/6))` is equal to ____________.


What is the principal value of cosec–1(2).


`tan^-1  (1 - x)/(1 + x) = 1/2tan^-1x, (x > 0)`, x then will be equal to.


Value of `sin(pi/3 - sin^1 (- 1/2))` is equal to


Let x = sin–1(sin8) + cos–1(cos11) + tan–1(tan7), and x = k(π – 2.4) for an integer k, then the value of k is ______.


`cot^-1(sqrt(cos α)) - tan^-1 (sqrt(cos α))` = x, then sin x = ______.


Number of values of x which lie in [0, 2π] and satisfy the equation

`(cos  x/4 - 2sinx) sinx + (1 + sin  x/4 - 2cosx)cosx` = 0


If sin–1a + sin–1b + sin–1c = π, then find the value of `asqrt(1 - a^2) + bsqrt(1 - b^2) + csqrt(1 - c^2)`.


If ax + b (sec (tan–1 x)) = c and ay + b (sec.(tan–1 y)) = c, then `(x + y)/(1 - xy)` = ______.


If x ∈ R – {0}, then `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2)))`


`(tan^-1 (sqrt(3)) - sec^-1(-2))/("cosec"^-1(-sqrt(2)) + cos^-1(-1/2))` is equal to ______.


sin [cot–1 (cos (tan–1 x))] = ______.


If cos–1 x > sin–1 x, then ______.


Find the value of `cos(x/2)`, if tan x = `5/12` and x lies in third quadrant.


If –1 ≤ x ≤ 1, the prove that sin–1 x + cos–1 x = `π/2`


`sin[π/3 + sin^-1 (1/2)]` is equal to ______.


Find the value of `sin(2cos^-1  sqrt(5)/3)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×