Advertisements
Advertisements
Question
Show that:
`cos^(-1)(4/5)+cos^(-1)(12/13)=cos^(-1)(33/65)`
Solution
Let a = `"cos"^-1 (4/5)` and b = `"cos"^-1 (12/13)`
Let a = `"cos"^-1 (4/5)`
cos a = `4/5`
We know that
sin2a = 1 - cos2a
sin a = `sqrt (1-"cos"^2 "a")`
`= sqrt (1 - (4/5)^2) = sqrt (1 - 16/25)`
`= sqrt ((25-16)/25) = sqrt (9/25) = 3/5`
Let b = `"cos"^-1 (12/13)`
cos b = `12/13`
W know that
sin2b = 1 - cos2b
sin b = `sqrt (1 - "cos"^2 "b")`
`= sqrt (1 - (12/13)^2) = sqrt (1 - 144/169)`
`= sqrt ((169-144)/169) = sqrt (25/169) = 5/13`
We know that
cos (a+b) = cos a cos b - sin a sin b
Putting values
cos a = `4/5` , sin a = `3/5`
& cos b = `12/13` , sin b = `5/13`
cos (a+b) = `4/5 xx 12/13 xx 3/5 xx 5/13`
`= 48/65 - 3/13`
`= (48 - 15)/65`
`= 33/65`
∴ cos (a+b) = `33/65`
a + b = cos-1 `(33/65)`
`"cos"^-1 4/5 + "cos"^-1 (12/15) = "cos"^-1 (33/65)`
Hence LH.S = R.H.S
Hence proved.
APPEARS IN
RELATED QUESTIONS
If `tan^-1((x-1)/(x-2))+cot^-1((x+2)/(x+1))=pi/4; `
Find the principal value of `cosec^(-1)(-sqrt2)`
Find the value of the following:
`cos^(-1) (1/2) + 2 sin^(-1)(1/2)`
Find the value of the following:
If sin−1 x = y, then
`tan^(-1) sqrt3 - sec^(-1)(-2)` is equal to ______.
Find the value of the following:
`tan^(-1) (tan (7x)/6)`
`sin^-1 1/2-2sin^-1 1/sqrt2`
Find the domain of the following function:
`f(x)sin^-1sqrt(x^2-1)`
Evaluate the following:
`tan^-1 1+cos^-1 (-1/2)+sin^-1(-1/2)`
Evaluate the following:
`tan^-1(tan (5pi)/6)+cos^-1{cos((13pi)/6)}`
Find the set of values of `cosec^-1(sqrt3/2)`
Evaluate the following:
`tan^-1(-1/sqrt3)+cot^-1(1/sqrt3)+tan^-1(sin(-pi/2))`
Prove that:
cot−1 7 + cot−1 8 + cot−1 18 = cot−1 3 .
In ΔABC, if a = 18, b = 24, c = 30 then find the values of cos `A/2`
In ΔABC prove that `sin "A"/(2). sin "B"/(2). sin "C"/(2) = ["A(ΔABC)"]^2/"abcs"`
Find the principal value of the following: tan- 1( - √3)
Evaluate the following:
`"cosec"^-1(-sqrt(2)) + cot^-1(sqrt(3))`
Prove the following:
`sin^-1(-1/2) + cos^-1(-sqrt(3)/2) = cos^-1(-1/2)`
Prove the following:
`2tan^-1(1/3) = tan^-1(3/4)`
The principal value of sin−1`(1/2)` is ______
`tan^-1(tan (7pi)/6)` = ______
Evaluate:
`sin[cos^-1 (3/5)]`
Show that `sin^-1(3/5) + sin^-1(8/17) = cos^-1(36/85)`
Find the principal value of the following:
cosec-1 (2)
Prove that:
2 tan-1 (x) = `sin^-1 ((2x)/(1 + x^2))`
Evaluate:
`cos[tan^-1 (3/4)]`
Find the principal value of `sin^-1 1/sqrt(2)`
In Δ ABC, with the usual notations, if sin B sin C = `"bc"/"a"^2`, then the triangle is ______.
Which of the following function has period 2?
`sin^2(sin^-1 1/2) + tan^2 (sec^-1 2) + cot^2(cosec^-1 4)` = ______.
If 2tan-1 (cos x) = tan-1 (cosec2 x), then x = ______.
`cos(2sin^-1 3/4+cos^-1 3/4)=` ______.
`sin{tan^-1((1 - x^2)/(2x)) + cos^-1((1 - x^2)/(1 + x^2))}` is equal to ______
If `3tan^-1x +cot^-1x = pi`, then xis equal to ______.
The value of `sin^-1[cos(pi/3)] + sin^-1[tan((5pi)/4)]` is ______.
Show that `2tan^-1 (-3) = (-pi)/2 + tan^-1 ((-4)/3)`
All trigonometric functions have inverse over their respective domains.
`("cos" 8° - "sin" 8°)/("cos" 8° + "sin" 8°)` is equal to ____________.
If tan-1 3 + tan-1 x = tan-1 8, then x = ____________.
`"sin"^-1 (-1/2)`
`"cos"^-1 1/2 + 2 "sin"^-1 1/2` is equal to ____________.
`2 "tan"^-1 ("cos x") = "tan"^-1 (2 "cosec x")`
3 tan-1 a is equal to ____________.
The equation 2cos-1 x + sin-1 x `= (11pi)/6` has ____________.
If `"x" in (- pi/2, pi/2), "then the value of tan"^-1 ("tan x"/4) + "tan"^-1 ((3 "sin" 2 "x")/(5 + 3 "cos" 2 "x"))` is ____________.
`sin[π/3 - sin^-1 (-1/2)]` is equal to:
`"cos"^-1 ("cos" ((7pi)/6))` is equal to ____________.
What is the principal value of cosec–1(2).
`tan^-1 (1 - x)/(1 + x) = 1/2tan^-1x, (x > 0)`, x then will be equal to.
Value of `sin(pi/3 - sin^1 (- 1/2))` is equal to
Let x = sin–1(sin8) + cos–1(cos11) + tan–1(tan7), and x = k(π – 2.4) for an integer k, then the value of k is ______.
`cot^-1(sqrt(cos α)) - tan^-1 (sqrt(cos α))` = x, then sin x = ______.
Number of values of x which lie in [0, 2π] and satisfy the equation
`(cos x/4 - 2sinx) sinx + (1 + sin x/4 - 2cosx)cosx` = 0
If sin–1a + sin–1b + sin–1c = π, then find the value of `asqrt(1 - a^2) + bsqrt(1 - b^2) + csqrt(1 - c^2)`.
If ax + b (sec (tan–1 x)) = c and ay + b (sec.(tan–1 y)) = c, then `(x + y)/(1 - xy)` = ______.
If x ∈ R – {0}, then `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2)))`
`(tan^-1 (sqrt(3)) - sec^-1(-2))/("cosec"^-1(-sqrt(2)) + cos^-1(-1/2))` is equal to ______.
sin [cot–1 (cos (tan–1 x))] = ______.
If cos–1 x > sin–1 x, then ______.
Find the value of `cos(x/2)`, if tan x = `5/12` and x lies in third quadrant.
If –1 ≤ x ≤ 1, the prove that sin–1 x + cos–1 x = `π/2`
`sin[π/3 + sin^-1 (1/2)]` is equal to ______.
Find the value of `sin(2cos^-1 sqrt(5)/3)`.