Advertisements
Advertisements
Question
Evaluate the following:
`tan^-1 1+cos^-1 (-1/2)+sin^-1(-1/2)`
Solution
Let `sin^-1(-1/2)=y`
Then,
`siny=-1/2`
We know that the range of the principal value branch is `[-pi/2,pi/2].`
Thus,
`siny=-1/2=sin(-pi/6)`
`=>y=-pi/6in[-pi/2,pi/2]`
Now,
Let cos^-1(-1/2)= z
Then,
`cosz=-1/2`
We know that the range of the principal value branch is [0, π].
Thus,
`cosz=-1/2=cos((2pi)/3)`
`=>z = (2pi)/3in[0,pi]`
so
`tan^-1 1+cos^-1(-1/2)+sin^-1(1/2)=pi/4+(2pi)/3-pi/6=(3pi)/4`
`therefore tan^-1 1+cos^-1(-1/2)+sin^-1(1/2)=(3pi)/4`
APPEARS IN
RELATED QUESTIONS
Find the principal value of `cos^(-1) (-1/sqrt2)`
Find the domain of the following function:
`f(x) = sin^-1x + sinx`
Evaluate the following:
`tan^-1(-1/sqrt3)+tan^-1(-sqrt3)+tan^-1(sin(-pi/2))`
Evaluate: tan `[ 2 tan^-1 (1)/(2) – cot^-1 3]`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of sin `(A/2)`.
In ΔABC, if a = 18, b = 24, c = 30 then find the values of tan `A/2`
In ΔABC prove that `(b + c - a) tan "A"/(2) = (c + a - b)tan "B"/(2) = (a + b - c)tan "C"/(2)`.
In ΔABC prove that `sin "A"/(2). sin "B"/(2). sin "C"/(2) = ["A(ΔABC)"]^2/"abcs"`
Find the principal value of the following: tan-1(– 1)
Evaluate the following:
`"cosec"^-1(-sqrt(2)) + cot^-1(sqrt(3))`
Prove the following:
`2tan^-1(1/3) = tan^-1(3/4)`
Find the principal solutions of the following equation:
sin 2θ = `− 1/(sqrt2)`
Evaluate `cos[pi/6 + cos^-1 (- sqrt(3)/2)]`
If tan−1x + tan−1y + tan−1z = π, then show that `1/(xy) + 1/(yz) + 1/(zx)` = 1
Find the principal value of the following:
`sin^-1 (- 1/2)`
Find the principal value of the following:
cosec-1 (2)
Show that `tan^-1 (1/2) + tan^-1 (2/11) = tan^-1 (3/4)`
Express `tan^-1 [(cos x)/(1 - sin x)], - pi/2 < x < (3pi)/2` in the simplest form.
The value of cot `(tan^-1 2x + cot^-1 2x)` is ______
In Δ ABC, with the usual notations, if sin B sin C = `"bc"/"a"^2`, then the triangle is ______.
If `sin^-1x + cos^-1y = (3pi)/10,` then `cos^-1x + sin^-1y =` ______
If sin `(sin^-1 1/3 + cos^-1 x) = 1`, then the value of x is ______.
`cos^-1 4/5 + tan^-1 3/5` = ______.
If `3tan^-1x +cot^-1x = pi`, then xis equal to ______.
The domain of the function y = sin–1 (– x2) is ______.
Solve the following equation `cos(tan^-1x) = sin(cot^-1 3/4)`
`"sin" 265° - "cos" 265°` is ____________.
If `"sin"^-1("x"^2 - 7"x" + 12) = "n"pi, AA "n" in "I"`, then x = ____________.
If `"cos"^-1 "x + sin"^-1 "x" = pi`, then the value of x is ____________.
If tan-1 3 + tan-1 x = tan-1 8, then x = ____________.
If `"x" in (- pi/2, pi/2), "then the value of tan"^-1 ("tan x"/4) + "tan"^-1 ((3 "sin" 2 "x")/(5 + 3 "cos" 2 "x"))` is ____________.
`sin[π/3 - sin^-1 (-1/2)]` is equal to:
`"cos" ["tan"^-1 {"sin" ("cot"^-1 "x")}]` is equal to ____________.
What is the principal value of cosec–1(2).
Values of tan–1 – sec–1(–2) is equal to
If `sin(sin^-1 1/5 + cos^-1 x) = 1`, the what will be the value of x?
`(tan^-1 (sqrt(3)) - sec^-1(-2))/("cosec"^-1(-sqrt(2)) + cos^-1(-1/2))` is equal to ______.
If –1 ≤ x ≤ 1, the prove that sin–1 x + cos–1 x = `π/2`
Find the value of `tan^-1(x/y) + tan^-1((y - x)/(y + x))`