Advertisements
Advertisements
Question
Evaluate the following:
`"cosec"^-1(-sqrt(2)) + cot^-1(sqrt(3))`
Solution
Let `"cosec"^-1(-sqrt(2)) = α, "where" (-pi)/(2) ≤ y ≤ pi/(2), y ≠ 0`
∴ cosec α = `- sqrt(2) = -"cosec" pi/(4)`
∴ cosec α = `"cosec"(-pi/4)` ...[∵ cosec (– θ) = – cosec θ]]
∴ α = `- pi/(4) ...[∵ (-pi)/(2) ≤ (-pi)/(4) ≤ pi/(2)]`
∴ `"cosec"^-1(- sqrt(2)) = - pi/(4)` ...(1)
Let `cot^-1(sqrt(3))` = β, where 0 < β < π
∴ cot β = `sqrt(3) = cot (pi)/(6)`
∴ β = `(pi)/(6) ...[∵ 0 < (pi)/(6) < pi]`
∴ `cot^-1(sqrt(3)) = (pi)/(6)` ...(2)
∴ `"cosec"^-1(-sqrt(2)) + cot^-1(sqrt(3))`
= `-pi/(4) + (pi)/(6)` ...[By (1) and (2)]
= `(-3pi + 2pi)/(12)`
= `-(pi)/(12)`.
APPEARS IN
RELATED QUESTIONS
If `tan^-1((x-1)/(x-2))+cot^-1((x+2)/(x+1))=pi/4; `
Show that `2sin^-1(3/5) = tan^-1(24/7)`
Show that:
`cos^(-1)(4/5)+cos^(-1)(12/13)=cos^(-1)(33/65)`
Find the principal values of `sin^(-1) (-1/2)`
Find the principal value of cosec−1 (2)
Find the principal value of `sec^(-1) (2/sqrt(3))`
Find the principal value of `cosec^(-1)(-sqrt2)`
Find the value of the following:
`cos^(-1) (1/2) + 2 sin^(-1)(1/2)`
Find the domain of the following function:
`f(x)=sin^-1x^2`
Find the set of values of `cosec^-1(sqrt3/2)`
Evaluate the following:
`cot^-1{2cos(sin^-1 sqrt3/2)}`
Prove that:
cot−1 7 + cot−1 8 + cot−1 18 = cot−1 3 .
Evaluate: tan `[ 2 tan^-1 (1)/(2) – cot^-1 3]`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of cos `A/2`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of A(ΔABC)
Find the principal value of the following: cosec- 1(2)
Find the principal value of the following: tan-1(– 1)
Prove the following:
`sin^-1(-1/2) + cos^-1(-sqrt(3)/2) = cos^-1(-1/2)`
Prove the following:
`tan^-1(1/2) + tan^-1(1/3) = pi/(4)`
Find the principal solutions of the following equation:
tan 5θ = -1
Find the principal solutions of the following equation:
cot 2θ = 0.
If `sin(sin^-1(1/5) + cos^-1(x))` = 1, then x = ______
Prove that `2 tan^-1 (3/4) = tan^-1(24/7)`
Evaluate `cos[pi/6 + cos^-1 (- sqrt(3)/2)]`
Prove that sin `[tan^-1 ((1 - x^2)/(2x)) + cos^-1 ((1 - x^2)/(1 + x^2))]` = 1
Prove that `2 tan^-1 (1/8) + tan^-1 (1/7) + 2tan^-1 (1/5) = pi/4`
Find the principal value of the following:
`sin^-1 (- 1/2)`
Find the principal value of `cos^-1 sqrt(3)/2`
Find the principal value of cosec–1(– 1)
Find the principal value of `sec^-1 (- sqrt(2))`
lf `sqrt3costheta + sintheta = sqrt2`, then the general value of θ is ______
If `sin^-1(x/13) + cosec^-1(13/12) = pi/2`, then the value of x is ______
In Δ ABC, with the usual notations, if sin B sin C = `"bc"/"a"^2`, then the triangle is ______.
If `sin^-1 3/5 + cos^-1 12/13 = sin^-1 P`, then P is equal to ______
`sin^2(sin^-1 1/2) + tan^2 (sec^-1 2) + cot^2(cosec^-1 4)` = ______.
If 2tan-1 (cos x) = tan-1 (cosec2 x), then x = ______.
`tan[2tan^-1 (1/3) - pi/4]` = ______.
`cos(2sin^-1 3/4+cos^-1 3/4)=` ______.
The value of `sin^-1(cos (53pi)/5)` is ______
The value of `cos(pi/4 + x) - cos(pi/4 - x)` is ______.
`cos^-1 4/5 + tan^-1 3/5` = ______.
If `3tan^-1x +cot^-1x = pi`, then xis equal to ______.
The value of `sin^-1[cos(pi/3)] + sin^-1[tan((5pi)/4)]` is ______.
The domain of the function defined by f(x) = sin–1x + cosx is ______.
If 2 tan–1(cos θ) = tan–1(2 cosec θ), then show that θ = π 4, where n is any integer.
Prove that `tan^-1 1/4 + tan^-1 2/9 = sin^-1 1/sqrt(5)`
`"cos" 2 theta` is not equal to ____________.
When `"x" = "x"/2`, then tan x is ____________.
`"sin"^2 25° + "sin"^2 65°` is equal to ____________.
If `"sin"^-1("x"^2 - 7"x" + 12) = "n"pi, AA "n" in "I"`, then x = ____________.
`"cos"^-1 1/2 + 2 "sin"^-1 1/2` is equal to ____________.
If 6sin-1 (x2 – 6x + 8.5) = `pi`, then x is equal to ____________.
`"sin"^-1 (1 - "x") - 2 "sin"^-1 "x" = pi/2`
`"cos"^-1 ["cos" (2 "cot"^-1 (sqrt2 - 1))] =` ____________.
The range of sin-1 x + cos-1 x + tan-1 x is ____________.
If `"sin"^-1("x"^2 - 7"x" + 12) = "n"pi, AA "n" in "I"`, then x = ____________.
If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt "cos" alpha) = "x",` then sinx is equal to ____________.
`"cos"^-1 ("cos" ((7pi)/6))` is equal to ____________.
Which of the following functions is inverse of itself?
`lim_(n→∞)tan{sum_(r = 1)^n tan^-1(1/(1 + r + r^2))}` is equal to ______.
Consider f(x) = sin–1[2x] + cos–1([x] – 1) (where [.] denotes greatest integer function.) If domain of f(x) is [a, b) and the range of f(x) is {c, d} then `a + b + (2d)/c` is equal to ______. (where c < d)
Number of values of x satisfying the system of equations `sin^-1sqrt(2 + e^(-2x) - 2e^-x) + sec^-1sqrt(1 - x^2 + x^4) = π/2` and `5^(1+tan^-1x)` = 4 + [cos–1x] is ______ (where [.] denotes greatest integer function)
If ax + b (sec (tan–1 x)) = c and ay + b (sec.(tan–1 y)) = c, then `(x + y)/(1 - xy)` = ______.
The value of cos (2cos–1 x + sin–1 x) at x = `1/5` is ______.
If 2 tan–1 (cosx) = tan–1 (2 cosec x), then sin x + cos x is equal to ______.
`(tan^-1 (sqrt(3)) - sec^-1(-2))/("cosec"^-1(-sqrt(2)) + cos^-1(-1/2))` is equal to ______.
sin [cot–1 (cos (tan–1 x))] = ______.
If cos–1 x > sin–1 x, then ______.
`sin[π/3 + sin^-1 (1/2)]` is equal to ______.
Find the value of `sin(2cos^-1 sqrt(5)/3)`.
If tan 4θ = `tan(2/θ)`, then the general value of θ is ______.