Advertisements
Advertisements
Question
Prove that `tan^-1 1/4 + tan^-1 2/9 = sin^-1 1/sqrt(5)`
Solution
L.H.S. = `tan^-1 1/4 + tan^-1 2/9`
= `tan^-1 (1/4 + 2/9)/(1 - 1/4 * 2/9)`
= `tan^-1 (9 + 8)/(36 - 2)`
= `tan^-1 1/2`
= `sin^-1 1/sqrt(5)`.
APPEARS IN
RELATED QUESTIONS
Show that:
`cos^(-1)(4/5)+cos^(-1)(12/13)=cos^(-1)(33/65)`
Find the set of values of `cosec^-1(sqrt3/2)`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of A(ΔABC)
Evaluate the following:
`tan^-1(1) + cos^-1(1/2) + sin^-1(1/2)`
Evaluate the following:
`tan^-1 sqrt(3) - sec^-1 (-2)`
Prove the following:
`cos^-1(3/5) + cos^-1(4/5) = pi/(2)`
Prove the following:
`2tan^-1(1/3) = tan^-1(3/4)`
Prove the following:
`tan^-1["cosθ + sinθ"/"cosθ - sinθ"] = pi/(4) + θ, if θ ∈ (- pi/4, pi/4)`
Find the principal solutions of the following equation:
sin 2θ = `− 1/(sqrt2)`
Prove that sin `[tan^-1 ((1 - x^2)/(2x)) + cos^-1 ((1 - x^2)/(1 + x^2))]` = 1
Show that `tan^-1 (1/2) + tan^-1 (2/11) = tan^-1 (3/4)`
lf `sqrt3costheta + sintheta = sqrt2`, then the general value of θ is ______
In ΔABC, tan`A/2 = 5/6` and tan`C/2 = 2/5`, then ______
The value of 2 `cot^-1 1/2 - cot^-1 4/3` is ______
If `sin^-1 3/5 + cos^-1 12/13 = sin^-1 P`, then P is equal to ______
The value of `sin^-1(cos (53pi)/5)` is ______
If `3tan^-1x +cot^-1x = pi`, then xis equal to ______.
The value of `sin^-1[cos(pi/3)] + sin^-1[tan((5pi)/4)]` is ______.
Solve for x `tan^-1((1 - x)/(1 + x)) = 1/2 tan^-1x, x > 0`
`"cos" ["tan"^-1 {"sin" ("cot"^-1 "x")}]` is equal to ____________.
`"tan"^-1 sqrt3 - "sec"^-1 (-2)` is equal to ____________.
Find the value, if sin–1x = y, then `->`:-
Number of values of x satisfying the system of equations `sin^-1sqrt(2 + e^(-2x) - 2e^-x) + sec^-1sqrt(1 - x^2 + x^4) = π/2` and `5^(1+tan^-1x)` = 4 + [cos–1x] is ______ (where [.] denotes greatest integer function)
If ax + b (sec (tan–1 x)) = c and ay + b (sec.(tan–1 y)) = c, then `(x + y)/(1 - xy)` = ______.
If tan–1 2x + tan–1 3x = `π/4`, then x = ______.
sin [cot–1 (cos (tan–1 x))] = ______.
Find the value of `cos(x/2)`, if tan x = `5/12` and x lies in third quadrant.
Find the value of `sin(2cos^-1 sqrt(5)/3)`.