Advertisements
Advertisements
Question
Prove the following:
`cos^-1(3/5) + cos^-1(4/5) = pi/(2)`
Solution
Let `cos^-1(3/5)` = x
∴ cos x = `(3)/(5), "where" 0 < x < pi/(2)`
∴ sin x > 0
Now,
sin x = `sqrt(1 - cos^2x)`
= `sqrt(1 - 9/25)`
= `sqrt(16/25)`
= `(4)/(5)`
∴ x = `sin^-1(4/5)`
∴ `cos^-1(3/5) = sin^-1(4/5)` ...(1)
L.H.S. = `cos^-1(3/5) + cos^-1(4/5)`
= `sin^-1(4/5) + cos^-1(4/5)` ...[By (1)]
= `pi/(2) ...[∵ sin^-1x + cos^-1x = pi/2]`
= R.H.S.
APPEARS IN
RELATED QUESTIONS
If `sin^-1(1-x) -2sin^-1x = pi/2` then x is
- -1/2
- 1
- 0
- 1/2
Find the principal values of `sin^(-1) (-1/2)`
Find the principal value of cosec−1 (2)
Find the principal value of `cos^(-1) (-1/2)`
Find the principal value of `cosec^(-1)(-sqrt2)`
Find the value of the following:
`cos^(-1) (1/2) + 2 sin^(-1)(1/2)`
Find the value of the following:
If sin−1 x = y, then
`sin^-1{cos(sin^-1 sqrt3/2)}`
If `sin^-1 x + sin^-1 y+sin^-1 z+sin^-1 t=2pi` , then find the value of x2 + y2 + z2 + t2
Evaluate the following:
`cot^-1 1/sqrt3-\text(cosec)^-1(-2)+sec^-1(2/sqrt3)`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of cosA
In ΔABC, if a = 18, b = 24, c = 30 then find the values of A(ΔABC)
In ΔABC, if a = 18, b = 24, c = 30 then find the values of sinA
In ΔABC prove that `(b + c - a) tan "A"/(2) = (c + a - b)tan "B"/(2) = (a + b - c)tan "C"/(2)`.
Evaluate the following:
`"cosec"^-1(-sqrt(2)) + cot^-1(sqrt(3))`
Prove the following:
`sin^-1(3/5) + cos^-1(12/13) = sin^-1(56/65)`
Prove the following:
`tan^-1(1/2) + tan^-1(1/3) = pi/(4)`
Prove the following:
`2tan^-1(1/3) = tan^-1(3/4)`
Prove the following:
`tan^-1["cosθ + sinθ"/"cosθ - sinθ"] = pi/(4) + θ, if θ ∈ (- pi/4, pi/4)`
Prove the following:
`tan^-1[sqrt((1 - cosθ)/(1 + cosθ))] = θ/(2)`, if θ ∈ (– π, π).
Find the principal solutions of the following equation:
tan 5θ = -1
The principal value of sin−1`(1/2)` is ______
Prove that `2 tan^-1 (3/4) = tan^-1(24/7)`
Prove that `2 tan^-1 (1/8) + tan^-1 (1/7) + 2tan^-1 (1/5) = pi/4`
Find the principal value of the following:
`sin^-1 (- 1/2)`
Evaluate: sin`[1/2 cos^-1 (4/5)]`
Express `tan^-1 [(cos x)/(1 - sin x)], - pi/2 < x < (3pi)/2` in the simplest form.
Express `tan^-1 ((cos x - sin x)/(cos x + sin x))`, 0 < x < π in the simplest form.
Find the principal value of `cos^-1 sqrt(3)/2`
A man standing directly opposite to one side of a road of width x meter views a circular shaped traffic green signal of diameter ‘a’ meter on the other side of the road. The bottom of the green signal Is ‘b’ meter height from the horizontal level of viewer’s eye. If ‘a’ denotes the angle subtended by the diameter of the green signal at the viewer’s eye, then prove that α = `tan^-1 (("a" + "b")/x) - tan^-1 ("b"/x)`
The value of cot `(tan^-1 2x + cot^-1 2x)` is ______
`sin^-1x + sin^-1 1/x + cos^-1x + cos^-1 1/x` = ______
Which of the following function has period 2?
The principal value of `sin^-1 (sin (3pi)/4)` is ______.
`tan[2tan^-1 (1/3) - pi/4]` = ______.
In a triangle ABC, ∠C = 90°, then the value of `tan^-1 ("a"/("b + c")) + tan^-1("b"/("c + a"))` is ______.
If `3sin^-1((2x)/(1 + x^2)) - 4cos^-1((1 - x^2)/(1 + x^2)) + 2tan^-1((2x)/(1 - x^2)) = pi/3`, then x is equal to ______
`sin{tan^-1((1 - x^2)/(2x)) + cos^-1((1 - x^2)/(1 + x^2))}` is equal to ______
`cos^-1 4/5 + tan^-1 3/5` = ______.
Solve for x `tan^-1((1 - x)/(1 + x)) = 1/2 tan^-1x, x > 0`
The domain of y = cos–1(x2 – 4) is ______.
Prove that `cot(pi/4 - 2cot^-1 3)` = 7
`"sin"^2 25° + "sin"^2 65°` is equal to ____________.
`("cos" 8° - "sin" 8°)/("cos" 8° + "sin" 8°)` is equal to ____________.
If sin-1 x – cos-1 x `= pi/6,` then x = ____________.
If tan-1 3 + tan-1 x = tan-1 8, then x = ____________.
`"sin"^-1 (1/sqrt2)`
`"cos"^-1 1/2 + 2 "sin"^-1 1/2` is equal to ____________.
If 6sin-1 (x2 – 6x + 8.5) = `pi`, then x is equal to ____________.
`2 "tan"^-1 ("cos x") = "tan"^-1 (2 "cosec x")`
`"cos"^-1 ["cos" (2 "cot"^-1 (sqrt2 - 1))] =` ____________.
The range of sin-1 x + cos-1 x + tan-1 x is ____________.
`"tan"(pi/4 + 1/2 "cos"^-1 "x") + "tan" (pi/4 - 1/2 "cos"^-1 "x") =` ____________.
If `"x" in (- pi/2, pi/2), "then the value of tan"^-1 ("tan x"/4) + "tan"^-1 ((3 "sin" 2 "x")/(5 + 3 "cos" 2 "x"))` is ____________.
If A = `[(cosx, sinx),(-sinx, cosx)]`, then A1 A–1 is
If |Z1| = |Z2| and arg (Z1) + arg (Z2) = 0, then
Which of the following functions is inverse of itself?
If `sqrt(2)` sec θ + tan θ = 1, then the general value of θ is
The inverse of `f(x) = sqrt(3x^2 - 4x + 5)` is
Domain and Rariges of cos–1 is:-
What will be the principal value of `sin^-1(-1/2)`?
`tan^-1 (1 - x)/(1 + x) = 1/2tan^-1x, (x > 0)`, x then will be equal to.
`2tan^-1 (cos x) = tan^-1 (2"cosec" x)`, then 'x' will be equal to
If f(x) = x5 + 2x – 3, then (f–1)1 (–3) = ______.
Number of values of x satisfying the system of equations `sin^-1sqrt(2 + e^(-2x) - 2e^-x) + sec^-1sqrt(1 - x^2 + x^4) = π/2` and `5^(1+tan^-1x)` = 4 + [cos–1x] is ______ (where [.] denotes greatest integer function)
Number of values of x which lie in [0, 2π] and satisfy the equation
`(cos x/4 - 2sinx) sinx + (1 + sin x/4 - 2cosx)cosx` = 0
If tan–1 2x + tan–1 3x = `π/4`, then x = ______.
`(tan^-1 (sqrt(3)) - sec^-1(-2))/("cosec"^-1(-sqrt(2)) + cos^-1(-1/2))` is equal to ______.
If –1 ≤ x ≤ 1, the prove that sin–1 x + cos–1 x = `π/2`
Find the value of `sin(2cos^-1 sqrt(5)/3)`.
Solve for x:
5tan–1x + 3cot–1x = 2π